
A Mathematica Primer

For Students of Physics 218:

Oscillatory and Wave Phenomena

Brooks Thomas

Lafayette College

Third Edition

2018

Chapter 1

Basic Syntax

Getting started

After you double-clicking on the Mathematica 10 icon to open Mathematica, the first thing you’ll want to
do is create a new Mathematica notebook. A notebook is a file in which you can create, edit, and execute
Mathematica code. The information in a notebook — including both your input (the code you write) and
output (plots, drawings, the results of numerical calculations, etc.) can be saved and loaded. To create a
notebook from Mathematica’s welcome screen, click on the arrow next to the “New Document” icon and
select “Notebook” from the drop-down menu.

Once you have a notebook open, you can always create a new notebook by navigating to “File → New →
Notebook” from the main toolbar at the top of the window.

Once you’ve opened the notebook, you’re ready to begin interacting with Mathematica. Mathematica is
an incredibly powerful numerical tool, and there are a lot of things that it can do. Fortunately, despite all of
that sophistication, Mathematica is also pretty easy to get started with. The basic procedure for interacting
with a Mathematica notebook is that you begin by typing something (a formula, a command, the definition
of a function, etc.) on a line. When you’re finished with what you’re typing, you can hit the “Enter” or
“Return” key to go to a new line. When you’re ready, you can also hit “Shift + Enter” or “Shift + Return”
to evaluate all of the expressions or commands you’ve just written, at which point output of each line will

2

3

appear, in order, beneath the code you’ve written. The set of lines of code that get evaluated together when
you hit “Shift + Enter” are called a “cell.” You can tell which lines of code are in the sane cell by looking
on the right-hand side of the notebook window, thin, blue braces appear to indicate which items are in the
same cell.

The fact that you have to hit “Shift + Enter” rather than just “Enter” to execute Mathematica code
might take a little getting used to, but it becomes second nature pretty quickly.)

The basic syntax of Mathematica is explained below.

Functions

Arithmetic operations and exponentiation in Mathematica are fairly self-explanatory:

In[12]:= 6*2

Out[12]= 12

In[2]:= 6 + 2

Out[2]= 8

In[3]:= 6 - 2

Out[3]= 4

In[4]:= 6/2

Out[4]= 3

In[5]:= 6^2

Out[5]= 36

You can define a function in Mathematica using the syntax

FunctionName[variablename_] :=
followed by whatever you want the function to return. For example, if we wanted to define a function with
an argument x that returned 2x2, we might write

In[13]:= TwoXCubed[x_] := 2*x^3

TwoXCubed[5]

Out[14]= 250

Likewise, if we wanted to define a function that multiplies the argument by a variable called a, we might write

In[15]:= MultBya[x_] := a*x

MultBya[3]

Out[16]= 3 a

4 CHAPTER 1. BASIC SYNTAX

Note that the symbol a is blue in color in the input text here. This is Mathematica’s way of indicating that
the variable a hasn’t been explicitly assigned a value yet. Assigning a value to a variable is done using the
following syntax

In[17]:= a = 10

Out[17]= 10

Now the symbol a appears black rather than blue, indicating that it has been assigned a value. Now that
it has been assigned a value, it will retain that value in future calculations. For example, if we execute the
MultBya function we defined above again now, we’d obtain

In[18]:= MultBya[3]

Out[18]= 30

However, if we ever want to clear the value of a, we can do so by entering

In[19]:= Clear[a]
Note that after this command is executed, the symbol a appears blue again, and executing the MultBya
command once again yields

In[20]:= MultBya[3]

Out[20]= 3 a
It’s also worth pointing out that the argument which is fed to a function in Mathematica need not be ex-
plicitly defined. For example, feeding a itself to our function (after its value has been cleared) yields

In[21]:= MultBya[a]

Out[21]= a2

You can also define functions with multiple arguments in Mathematica. For example, if we wanted a
function that multiplied two numbers together and squared the result, we might write

In[22]:= ProductSquared[x_, y_] := (x*y)^2

ProductSquared[4, 2]

Out[23]= 64

In addition to the functions that you define yourself, Mathematica also has a large number of built-in
functions that you can call at any time. These include the commonly used functions listed below.

5

Sin[x]

Cos[x]

Tan[x]

ArcSin[x]

ArcCos[x]

ArcTan[x]

Exp[x]

Abs[x]

sinx

cosx

tanx

arcsinx

arccosx

arctanx

ex

|x|

Log[x]

Log10[x]

Log[b, x]

Sqrt[x]

Sinh[x]

Cosh[x]

Tanh[x]

ArcSinh[x]

ln x

log10 x

logb x
√
x

sinhx

coshx

tanhx

arcsinhx

There are also a few built-in constants:

Pi

E

I

Degree

π

e

i ≡
√
−1

π/180

The last one of these is intended to serve as a conversion factor between degrees and radians.

Lists

Lists are another commonly-used construction in Mathematica. They are used, for example, to represent
vectors, to store the results of multiple trials or measurements in a data set, and as arguments for certain
functions (such as the Plot and Integrate functions discussed later in this tutorial). You can create a list
by typing the elements (numbers, variables, etc.) that you want to be in that list enclosed by curly brackets
and separated by commas, as shown here

In[38]:= x

Out[38]= {x, y, z}
At this point in the course, we won’t be using lists too much except for when we need to use them as
arguments for built-in Mathematica functions. However, we will make extensive use of them later on in the
semester when we begin dealing with matrices.

Commenting

As with any other programming language, it’s often a good idea to include comments and annotations in
your Mathematica notebooks which explain your code. In Mathematica, comments are enclosed within
parentheses and asterisks like so:

In[6]:= (*This function multiplies two numbers together and

squares them.*)

ProductSquared[x_, y_] : (x*y)^2

ProductSquared[4, 2]

Out[7]= 64

The text of any comments in a Mathematical notebook appear light gray in color as an additional indication
that they are comments and not active code.

6 CHAPTER 1. BASIC SYNTAX

Numerical Values and Approximations

Mathematica is designed for symbolic mathematics as well as for numerical approximations, and many
numbers in Mathematica including the numbers π and e, are treated exactly. If you’re interested in getting
a numerical approximation for a quantity that involves numbers like this, you’ll want to use the N command:

In[35]:= 2*

[2*]

Out[35]= 2 π

6.28319

Other examples of quantities you’ll need N to evaluate are square roots of integers and integers raised to
miscellaneous powers. Also, if you want a numerical approximation of the quantity in question to a specified
precision, you can add an additional argument to N in order to specify the number of digits of precision you
want. For example, if you wanted to evaluate sπ to only 3 digits of precision, you could enter the following:

In[37]:= N[2* , 3]

Out[37]= 6.28

Plotting

Mathematica can also be used for plotting and graphical output. For example, let’s say we wanted to plot
the function cosx within the range −4π ≤ x ≤ 4π. To do this, we would evoke the the Plot command:

In[24]:= Plot[Cos[x], {x, -4* 4*Pi}]

Out[24]=

-10 -5 5 10

-1.0

-0.5

0.5

1.0

where the first argument of Plot is the function to be plotted and the second argument (which is obligatory
for this command) consists comma-separated list of the name of the independent variable and the minimum
and maximum values of that variable to be shown on the plot. We can also overlay plots of multiple functions
by making the first argument a list. For example:

7

In[25]:= Plot[{Cos[x], Sin[x]}, x, -4 4 Pi}]

Out[25]=

-10 -5 5 10

-1.0

-0.5

0.5

1.0

This is the most basic plot we can create in Mathematica. However, Mathematica provides a large num-
ber of options which can be used to modify the appearance of the plot. For example, if we wanted to change
the range of the y axis from the default value −1 ≤ y ≤ 1 Mathematica gave us, we can use the PlotRange
option to specify the range for both x and y. The syntax is

In[27]:= Plot[{Cos[x]}, x, -4 4 Pi},

PlotRange → 4 Pi, 4 Pi}, 2, 2}}]

Out[27]=

-10 -5 5 10

-2

-1

1

2

There are other options for Plot which allow the user to explicitly specify the colors, thicknesses, the dash-
ings of the curves plotted; add labels to the x and y axes; enclose the plot in a rectangular frame; change the
aspect ratio (the relative lengths of the x and y axes in the output image); and shade ares between different
curves. All of these options are invoked in the following plot:

8 CHAPTER 1. BASIC SYNTAX

In[26]:= Plot[{Cos[x]}, x, -4 Pi, 4 Pi}, PlotStyle → Red, Thick},

Frame → True, FrameLabel → "x", "y"}, Filling → Axis,

AspectRatio → 1]

Out[26]=

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

x

y

You can find out more about the syntax used to declare these options from the “Help” menu on the toolbar
at the top of the Mathematica window.

9

In addition to the basic plots illustrated above, Mathematica is also capable of making other kinds of
plots as well. One kind of plot which is particularly useful, for example, for plotting state-space trajectories
is a parametric plot. Such a plot displays a curve whose x and y coordinates are both functions of some
underlying parameter t. For example, if the relevant functions were x(t) = 3 cos t and y(t) = sin t, then we
could create a parametric plot using the following syntax:

In[28]:= ParametricPlot[{3*Cos[t], Sin[t]}, t, 10}]

Out[28]=

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

where the first argument of the ParametricPlot function is a list of the functions x(t) and y(t), and the
second argument gives the name of the underlying parameter and the endpoints of the range of values of
this parameter for which x(t) and y(t) are to be plotted.

Mathematica can also produce a contour plot of a function f(x, y) which depends on two variables. For
example, a plot of the function sin(xy) can be created using the following syntax:

10 CHAPTER 1. BASIC SYNTAX

In[39]:= [Sin[x*y], {x, -Pi, Pi}, {y, -Pi, Pi}]

Out[39]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

The ContourPlot function takes three arguments, since we need to specify the range for both x and y. It
is also possible to create a three-dimensional plot using the Plot3D command, the syntax for which is very
similar to that of ContourPlot:

11

[Sin[x*y], {x, -Pi, Pi}, {y, -Pi, Pi}]

Further documentation about these and other plotting commands is also available from the “Help” tab in
the Mathematica toolbar.

Calculus

Mathematica is also capable of performing a large number of calculus operations, including basic differenti-
ation and integration. The derivative

d

dx
f(x)

of a function f(x) with respect to the argument x is evaluated using the D function. For example, if we
wanted to evaluate the derivatives of the functions x3 + 2x2 + x and cosx, we would write

In[29]:= D[x^3 + 2*x^2 + x, x]

D[Cos[x], x]

Out[29]= 3 x2 + 4 x + 1

Out[30]= -sin(x)
The first argument of D is the function to be evaluated, and the second is the differentiation variable.

Integration in Mathematica is handled by the Integrate function, which is used for both definite and
indefinite integrals. To evaluate the indefinite integral

∫

f(x)dx

of a function f(x) with respect to the variable x, the syntax is

12 CHAPTER 1. BASIC SYNTAX

In[31]:= [3 x + x + 1, x]

Out[31]= x3 + 2 x2 + x
The syntax for a definite integral

∫ b

a

f(x)dx ,

with limits of integration a and b is similar, except for that the second argument of Integrate is the three-
item list {x, a, b}. For example, if we wanted to evaluate the definite integral

∫

4

0

[

3x2 + 4x+ 1
]

dx ,

we would write

In[32]:= [3 x + x + 1, {x, }]

Out[32]= 100

It’s also possible to use Mathematica to obtain Taylor-series expansions of a given function using the
Series function. For example, in order to obtain a Taylor-series expansion for cosx up to and including
terms in x4, we would write

In[33]:= Series[Cos[x], {x, 4}]

Out[33]= 1 -
x2

2
+
x4

24
+ Ox5

The three items appearing in the kist in the second argument of this function are the name of the expansion
variable, the value around which we’re expanding, and the highest power of x to keep in the expansion.
The final symbol appearing in the output line indicates that terms in x5 and higher are being neglected. In
order to get rid of this symbol (which you actually have to do in order to substitute the series into another
expression or manipulate it in some other way), just use the Normal command:

In[34]:= Normal[Series[Cos[x], {x, 4}]]

Out[34]=
x4

24
-
x2

2
+ 1

Saving and Exporting

Saving a Mathematica notebook you’ve created is as simple as going to the “File” menu in the toolbar and
selecting “Save” or “Save as. . . ” There is also a procedure for exporting specific cells to files. This can be
useful, for example, for saving individual plots that you might want to include in other files, send to other
people, or print out. The first step in this procedure is to left-click your mouse on the blue brace at the right
side of the scree which corresponds to that cell to highlight it. Next, go to the “File” menu and scroll down
to “Save selection as...”:

13

A pop-up menu will then appear, prompting you for a filename, a file format for the new file, etc.

Exercises

1. The general solution x(t) to the simple harmonic oscillator equation is

x(t) = A cos(ωt+ φ) .

(a) Make a plot in Mathematica which shows x as a function of t over the range −T ≤ t ≤ T , where T
is the period of oscillation. In costructing your plot, take A = 0.8 m, φ = −π/2, and ω = 5.0 s−1.

(b) Now make a single plot that shows x(t) together with both v(t)/ω and a(t)/ω2, where v(t) is the
velocity and a(t) is the acceleration, as functions of t for the same range of t. (The factors of ω
are included so that all of these quantities have units of distance.) If you can, make the x(t) curve
blue, the v(t)/ω curve green, and the a(t)/ω2 curve red. (For a hint on how to do this, see the
syntax used to produce the figure on p. 8.)

(c) How far out of phase are the x(t) and the v(t)/ω curves with each other? What about the x(t)
and the a(t)/ω2 curves?

2. Consider

(a) Use Mathematica to construct the state-space curve for a simple harmonic oscillator with an
oscillator frequency ω = 3.0 s−1 that begins from rest (no initial velocity) at x = 0.50 m.

(b) Find the initial velocity for which the oscillator would trace out exactly the same phase-space
trajectory if it had started at an initial position x = −0.20 m .

3. Consider an object that executes simple harmonic motion independently along two axes — for example,
pendulum bob free to swing in both the x and y directions. The motion of the object would be given
by

x(t) = A1 cos(ω1t+ φ) , y(t) = A2 cos(ω2t+ φ) .

Make a parametric plot of y vs. x for the case A1 = A2 = 1, with φ1 = φ2 = 0, and ω1 = 4ω2/3. Make
sure to set the range of t values so that you see the curve in its entirety. Make another plot with the
ω1 = 4ω2/7 and all of the other parameters unchanged. These curves are called Lissajous curves.
You can produce different Lissajous curves by varying the ratio ω1/ω2.

14 CHAPTER 1. BASIC SYNTAX

4. Consider the function

f(x) =
1

√

1 + x3/3
.

(a) Use Mathematica to determine the first four non-vanishing terms in the Taylor series for f(x).

(b) Make a plot which shows both the function f(x) itself and a set of curves representing the Taylor-
series approximations for f(x) with the first non-vanishing term alone, with the first two non-
vanishing terms, with the first three such terms, and with the first four such terms.

5. The Bessel function J0(t) is a set special functions which represents one of the solutions to the equation
of motion for a particular kind of damped oscillator with a damping coefficient that gets weaker with
time. In Mathematica, this function is represented by the command BesselJ[0, t].

(a) Plot J0(t) as a function of t on the range 0 ≤ t ≤ 50. Try to convince yourself that the resulting
curve is qualitatively what you’d expect the position function x(t) for an oscillator with a damping
coefficient that gets weaker with time. Find the corresponding velocity function v(x) and plot it
alongside J0(t).

(b) Plot the state-space curve associated with this Bessel-function solution. Is the shape of the curve
what you expect? Is the energy of the oscillator conserved?

(c) The successive zeroes of J0(t) are given in Mathematica by the function BesselJZero[0,n], where
n = 1 yields the first zero, n = 2 yields the second zero, etc.. Use this information to determine the
limiting value for the angular frequency of oscillation at very late times (note that this frequency
is not a constant), assuming that t is in seconds.

Chapter 2

Differential Equations

Solving Differential Equations

In addition to all of the features described in the previous chapter, Mathematica also provides a number
of tools for solving differential equations. Some of these tools are used for solving differential equations
symbolically, meaning that they output the function Such more powerful, but they’re only useful when a
closed-form solution to the equation that you’re trying to solve exists and is known. On the other hand,
Mathematica also includes additional tools for obtaining accurate numerical estimates of what the solution
to a differential equation looks like. These tools can be used even in cases in which no closed-form solution
to the equation can be found.

We’ll begin by looking at the tools Mathematica provides for solving differentia equations symbolically.
The most important of these tools is the DSolve function. In order to see how this function is used, it’s
probably best to start with an example. In particular, we’ll use DSolve to solve the equation of motion for
a simple harmonic oscillator:

d2x

dt2
= − ω2

0x ,

where ω0 is the (angular) frequency of oscillation. Here’s the syntax:

In[40]:= DSolve[D[x[t], {t, 2}] ⩵ -ω0^2 x t], x t], t]

Out[40]= {{x(t)→ c2 sin(tω) + c (tω

Let’s begin by focusing on the syntax that’s being used the input line. First of all, we see that the DSolve
function takes three arguments. The first of these arguments is the differential equation you’re trying to
solve, the second is the dependent variable — in this case, x[t] — expressed as a function of the independent
variable t, and the third is the independent variable itself. There are two other important things to notice
about the input syntax. The first is that a double equals sign == is used in the equation that’s being fed to
DSolve rather than a single equals sign. As we saw in the last chapter of the Mathematica primer, a single
equals sign = is used to do things like assigning a value to a variable. By contrast, a double equals sign
is used for formulating equations, expressing conditions in If statements, and other things of this nature.
The second important thing to note about the way our equation is written is that our dependent variable is
always expressed as a function of the independent variable. In other words, we always write x[t] rather than
just x in this equation. This also applies to the definition of the dependent variable in the second argument
of DSolve: here too, we write x[t] rather than x.

Now let’s turn to interpreting the output that Mathematica returns when DSolve is called. First of
all, note that the output comes enclosed by curly braces and that each element consists of the dependent
variable followed by an arrow pointing to an expression. This entire object — including x[t], the arrow, and
the expression that follows it — is an example of what’s called a “rule” in Mathematica syntax. A rule is
essentially an instruction to replace every instance of the the expression on the left of the arrow with the
expression on the right side of the arrow. For example,

15

16 CHAPTER 2. DIFFERENTIAL EQUATIONS

In[41]:= a → 2 b

Out[41]= a→ 2 b

is an instruction to replace every instance of the variable a with the expression 2b. The syntax for applying
a rule to an expression is as follows. Let’s say we wanted to apply the above rule to the expression

In[46]:= 3*a + 2

Out[46]= 3 a + 2
The syntax is

In[42]:= 3*a + 2 /. a → 2 b

Out[42]= 6 b + 2
You can also define symbols in Mathematica to represent rules in the same way you can define symbols to
represent numbers:

In[43]:= Seta2b a → 2 b

3 a + 2 /. Seta2b

Out[43]= a→ 2 b

Out[44]= 6 b + 2

As you may have already guessed, the expression on the right side of the arrow in the output produced
by DSolve above is the general solution to the to the differential equation we called on this command
to solve for us. The symbols C[1] and C[2] are the two undetermined coefficients that characterize the
general solution to this second-order linear differential equation. There are other ways of writing this general
solution, of course. The DSolve function may not always express the solution to a differential equation in
the form that you’d want, so you’ll often have to think a bit about how to re-express the result it gives you
in a more familiar or canonical form.

This input syntax might seem a little cumbersome, but fortunately Mathematica does provide a useful
shorthand for expressing derivatives with respect to the independent variable in ordinary differential equa-
tions. This shorthand is to write x′[t] rather than D[x[t],t] in order to express a first derivative, x′′[t]
in order to express a second derivative, and so on. Since the independent variable is specified in the third
argument of DSolve, Mathematica knows the variable with respect to which you’re differentiating when you
use this prime notation. Thus, when we write

In[47]:= DSolve[x [t] ⩵ -ω *x[t], x[t], t]

Out[47]= {{x(t)→ c2 sin(tω) + c (tω
we get exactly the same output as when we used the full D[x[t],{t,2}] notation for the second derivative.

Now, for a slightly more complicated example, let’s consider what happens if we add an additional term
to this equation to represent the effect of damping forces which serve to dissipate the energy of the system to
its surroundings as time goes on. In particular, we’ll add a term which is proportional to the velocity x′[t]
of the oscillator with a constant coefficient we’ll call β. As we’ll see later on, the damping term associated
with air resistance acting on a sufficiently slowly moving object takes precisely this form. The resulting
differential equation is

d2x

dt2
+ 2β

dx

dt
+ ω2

0x = 0 .

This way

17

In[48]:= DSolve[D[x[t], {t, 2}] + 2*β*D[x[t], t] ω0^2 x t ⩵ 0,

x t , t

Out[48]= x(t)→ c1 ⅇ
t - β2-ω02 -β

+ c2 ⅇ
t β2-ω02 -β

If you’re familiar with the physics of damped harmonic oscillators, you may already have a lot of questions
about this solution. There are three different kinds of behavior that a damped harmonic oscillator can exhibit,
depending on how strong the damping is. When the damping is very slight, the oscillator oscillates back and
forth around the equilibrium point just like an undamped oscillator, except that the amplitude of oscillation
decreases over time. This is called “underdamped” motion. In the opposite regime, in which the damping
is very strong, the oscillator simply settles back toward the equilibrium point without oscillating around it.
This is called “overdamped” motion. At the transition point between these two regimes, we have what’s
called “critically damped” motion (which qualitatively resembles overdamped motion, but has some special
properties). If you’re familiar with the mathematical forms for the trajectory x(t) of the oscillator associated
with each of these three kinds of motion, you’ll recognize the functional form of x[t] that DSolve returns
as the form for x(t) associated with the overdamped case.

So what about the solution underdamped and critically-damped cases? We haven’t specified the values
of β or ω0 yet, so why did Mathematica output a solution of this form? These are important questions,
but in order to answer them, we first need to be able to take the general solution that DSolve outputs
and convert it into a function that we can evaluate for specific choices of these parameters and plot. Once
we’ve done that, we’ll be far better equipped to understand where the underdamped and critically-damped
solutions went.

The first issue we must deal with is that the output of DSolve is the two sets of curly braces which
enclose our rule for solving x[t]. As we learned in the last chapter of this Mathematica primer, curly braces
are used in Mathematica to define lists — objects which consist of sets of elements (which can be numbers,
functions, varibles, etc.) separated by commas. For example,

In[50]:= L1 = {1, - }

Out[50]= {1, -3, 7}
is a list of three numbers. We have already seen that many functions in Mathematica require certain of their
arguments to be in the form of lists. However, lists are used for a wide variety of things in Mathematica:
they’re used to write vectors and matrices, to store sets of data, to define piecewise functions, and much
more. The output of DSolve is also a list — in fact it is a nested list, because its one and only element is
also a list. This sub-list also contains only a single element, which a rule for setting x[t] to the expression
on the right side of the arrow.

The syntax for picking out an element of a list is as follows. For example, to get the second element of
the three-element list L1 I defined above, I would write

In[51]:= L1[[2]]

Out[51]= -3
The syntax for picking an element out of a nested list is very similar. For example, let’s define the nested
list L2 to be

In[54]:= = {{1, 3}, {- }, {3, 5}}

Out[54]=

1 8 3

-2 4 6

3 12 5

18 CHAPTER 2. DIFFERENTIAL EQUATIONS

If I wanted to get the third element of a sub-list which is the second element of this list L2 which I define
below, I would write

In[99]:= L2[[2, 3]]

6

It’s worth remarking that Mathematica outputs this nested list is the form of a matrix. Indeed, matrices
are yet another application of nested lists in Mathematica. We’ll discuss this application of lists further in
Chapter ??

Thus, to extract the rule for setting x[t] to the solution for the damped harmonic oscillator from the
nested list that DSolve produces as its output, I would want to get the first (and only) element of that list
and then get the first (and only) element of the resulting sub-list:

Here, I have defined the the symbol DHOSol to represent the rule for setting x[t] to the solution. In order
to apply this rule to x[t], I use the syntax that I introduced above for applying rules to variables:

In[102]:= x[t] /. DHOSol

Out[102]= c1 ⅇ
t - β2-ω02 -β

+ c2 ⅇ
t β2-ω02 -β

Moreover, I can also use this same syntax to assign values to the undetermined coefficients C[1] and C[2].
All I need to do is apply a rule for assigning values to each of these coefficients. In fact, I can do this in one
step by defining a list of rules, like so

In[103]:= x[t] /. DHOSol /. { [] → [] → }

Out[103]= ⅇ
t - β2-ω02 -β

+ ⅇ
t β2-ω02 -β

You can verify for yourself using relations from the lecture notes for this course that the example values I’ve
chosen here for C[1] and C[2] correspond to the initial conditions x0 = 2 and v0 = 0.

The next step is to convert the resulting expression we get for x[t] into a function. We already know
how to define functions (including functions of multiple variables) from the last chapter of this Mathematica
primer, so it would seem that all we’d need to do in order to turn our solution into a function and then
evaluate it for some particular choice of variables — say, β = 0.5, ω = 5, and t = 3 — is the following:

19

In[104]:= DHOSolFunction[β_, ω0_, t_] :=

x[t] /. DHOSol /. {C[1] → 1, C[2] → 1}

DHOSolFunction[1, 5, 3]

Out[105]= x(3)
However, you can see from the second line that we didn’t get the output we’d expected. What went wrong
here? The problem is that there are certain default protocol in Mathematica about when to assign and
when not to assign values to the variables that appear in certain kinds of expressions. However, there’s an
easy way to override those protocols. Indeed, there built-in function called Evaluate which simply instructs
Mathematica to override them and assign the values anyhow. Thus, we need to write

In[106]:= DHOSolFunction[β_, ω0_, t_] :=

Evaluate[x[t] /. DHOSol /. {C[1] → 1, C[2] → 1}];

DHOSolFunction[0.5, 5, 3]

-0.316262 + 0. ⅈ
Now when we call the function DHOSolFunction for numerical values of its arguments, Mathematica re-
turns a number. It’s expressed in the form of a complex number, as you can see, but since the imaginary
part is zero, this number is purely real, as you’d expect.

Speaking of complex numbers, this might be a good time to revisit the question about what happened to
the underdamped solutions for x(t). You might have noticed that the values β = 0.5 and ω0 = 5 that I fed to
our newly-defined DHOSolFunction function in the above example actually correspond to underdamped
motion (ω0 > β) rather than overdamped motion (ω0 < β). Nevertheless, Mathematica was able to evaluate
this function just fine. In fact, if we plot DHOSolFunction at a function of t for these values of β and ω0,
we get precisely the kind of x(t) curve we’d expect for an underdamped oscillator:

In[108]:= Plot[DHOSolFunction[0.5, 5, t], {t, 0, 10},

PlotRange → {{0, 10}, {-2, 2}}]

Out[108]=

2 4 6 8 10

-2

-1

0

1

2

Likewise, when we choose values for β and ω0 that correspond to the overdamped case, we get a plot which
looks like the sum of two falling exponentials:

20 CHAPTER 2. DIFFERENTIAL EQUATIONS

In[109]:= Plot[DHOSolFunction[15, 5, t], {t, 0, 10},

PlotRange → {{0, 10}, {-2, 2}}]

Out[109]=

2 4 6 8 10

-2

-1

0

1

2

The reason we get sensible results in both of these cases in that unlike a lot of other programming languages
an numerical evaluation packages, Mathematica knows how to handle complex numbers. In the underdamped
case, the roots r± = −β ±

√

β2 − ω2 to the characteristic equation for the damped harmonic oscillator are
complex, but that’s no problem for Mathematica. The single rule that DSolve gives us is therefore valid for
handling both the underdamped and overdamped cases.

For the critically-damped case, however, the situation is very different. Indeed, this case highlights on of
the important caveats about using computational tools like Mathematica to evaluate differential equations
for you. Recall that the general solution for the critically-damped case takes the form

x(t) =
(

B1 +B2t
)

e−βt ,

where B1 and B2 are the two undetermined coefficients. Let’s define a Mathematics function that corre-
sponds to this solution for the critically-damped case:

In[110]:= CritDampFunction[β_, ω0_, t_, B1_, B2_] :=

(B1 + B2*t)*Exp[-β *t]
We have also shown in the lecture notes that the undetermined coefficients B1 and B2 for critically-damped
motion are related to the initial position x0 and velocity v0 of the oscillator at time t = 0 by

B1 = x0 , B2 = v0 + βx0 .

Thus, the assignment C[1] = 1 and C[2] = 1 we have been making above corresponds to the assignment
B1 = 2 and B2 = 10 for the critically-damped solution.

If DSolve is doing what it should be doing, the function DHOSolFunction that we obtained from
the output of DSolve and the function that we have defined in CritDampFunction should give the same
results for this assignment of B1 and B2. However, when we plot these two functions side by side, we see
that these two functions do not yield the same results:

21

In[111]:= Plot[{DHOSolFunction[5, 5, t],

CritDampFunction[5, 5, t, 2, 10]}, t, 0, 10},

PlotRange 0, 2}, 2, 2}}]

Out[111]=

0.5 1.0 1.5 2.0

-2

-1

0

1

2

In this case, something clearly really is going wrong. We can also see evidence of this problem if we evaluate
DHOSolFunction with undefined variables rather than numerical values for its three arguments. Indeed,
when we do this for the special case where ω0 = β, the function returns

In[115]:= DHOSolFunction[β, β, t]

Out[115]= 2 ⅇβ (-t)

There should also be a term that looks like te−βt with a non-vanishing coefficient, but this term does not
appear. In other words, we have discovered an important limitation in how Mathematica solves differential
equations in symbolic form. We have seen that Mathematica yields the correct expression for most values
you assign to the symbols you use to parametrize the differential equation you feed to DSolve. However, it
often “misses” special cases like the critically-damped case in which might arise for particular special choices
of values. On the other hand, if we specify that ω0 = β ahead of time, before we plugged our symbolic
equation into DSolve, we get the correct functional form for x(t) for the critically-damped case:

In[116]:= DSolve[D[x[t], {t, 2}] + 2*β*D[x[t], t] + β 2*x[t] 0,

x[t], t]

Out[116]= x t) c1 ⅇβ t) c2 t ⅇβ t)
Again, the lesson is that one must always be careful in interpreting the results that you get out of a computer
program — even a sophisticated symbolic-evaluation package like Mathematica.

Piecewise Functions

As we’ll see later in this course, certain differential equations — for example, the equation of motion for a
harmonic oscillator with damping caused by friction with a surface — can most easily be solved in terms of
a piecewise solution. A piecewise solution to a differential equation is a solution in which the solution x(t)
takes different functional forms for different ranges of the variable t. These different functions are “sewn
together” at the transition points between the different ranges by boundary conditions. For example, x(t)

22 CHAPTER 2. DIFFERENTIAL EQUATIONS

must be continuous across each transition point, since the oscillator can’t suddenly “teleport” from one
position to another.

Fortunately, Mathematica is equipped to deal with piecewise functions. In order to define a piecewise
function, we can use the built-in function Piecewise. One application of piecewise functions that we’ll deal
with later on in this course is to describe the motion of an oscillator which is damped by friction — for
example, a mass m attached to a spring sliding along a tabletop with coefficient of kinetic friction µk. We’ll
defer the discussion of how to set up and solve this equation of motion until later in th esemester, but the
important thing for our present purposes is that the solution x(t) to the equation of motion for such an
oscillator has the form

x(t) =

(x0 − d) cos(ωt) + d 0 ≤ t < T/2

(x0 − 3d) cos(ωt)− d T/2 ≤ t < T

(x0 − 5d) cos(ωt) + d T ≤ t < 3T/2

(x0 − 7d) cos(ωt)− d 3T/2 ≤ t < 2T

. ,

(2.1)

where d = µkmg/k. Let’s say that we wanted to define a function xFricDamp in Mathematica which
represents this piecewise function. The syntax for doing this is

In[117]:= xFricDamp[x0_, d_, ω_, t_] :=

Piecewise[{{(x0 - d)*Cos[ω *t] + d, 0 ≤ t < Pi/ω},

{(x0 - 3*d)*Cos[ω *t] - d, Pi/ω ≤ t < 2*Pi/ω},

{(x0 - 5*d)*Cos[ω *t] + d, 2*Pi/ω ≤ t < 3*Pi/ω},

{(x0 - *d)* [ω *t] - d, 3* /ω ≤ t < * /ω}}]
Note that the function Piecewise takes one argument, which consists of a list of several sub-lists. Each
sub-list includes precisely two elements: the second element specifies a range of t values and the first element
gives the functional form for x(t) within that range.

For most purposes, piecewise functions in Mathematica can be treated like regular functions. For exam-
ple, one can plot them:

In[120]:= in = 1;

[xFricDamp[2, 0.2, in, t], {t, 0, * / in}]

Out[121]=

2 4 6 8 10 12

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

One can also take derivatives of them. For example, to get the velocity v(t) of the frictionally-damped

23

oscillator in the above example, we would enter

In[122]:= D[xFricDamp[, d, , t], t]

Out[122]=

ω (-(x0 - d)) sin(tω) t ≥ 0 ∧ t - π

ω
< 0

ω (-(x0 - 3 d)) sin(tω) t - π

ω
≥ 0 ∧ t - 2 π

ω
< 0

ω (-(x0 - 5 d)) sin(tω) t - 2 π

ω
≥ 0 ∧ t - 3 π

ω
< 0

ω (-(x0 - 7 d)) sin(tω) t - 3 π

ω
≥ 0 ∧ t - 4 π

ω
< 0

Indeed, the first four lines of this expression are simply the derivatives of x(t) within the four time intervals
we’ve specified. The last line may look a bit strange, but all it is is a default command that Mathematica
generates which assigns the value v(t) = 0 to v(t) for all values of t which lie outside the intervals we’ve
specified. We can change the default value Mathematica assigns to a piecewise function outside the intervals
we’ve explicitly specified by adding a second, optional argument to Piecewise. This argument simple con-
sists of the value we want our function to take outside those intervals. For example, let’s say that we knew
that the force of static friction will cause our oscillator to get “stuck” at the value (x0 − 8d) once t reaches
2T . To build this behavior into our function xFricDamp, we could write

In[123]:= xFricDamp[x0_, d_, ω_, t_] :=

Piecewise[{{(x0 - d)*Cos[ω *t] + d, 0 t < Pi/ω},

{(x0 - 3*d)*Cos[ω *t] - d, Pi/ω t < 2*Pi/ω},

{(x0 - 5*d)*Cos[ω *t] + d, 2*Pi/ω t < 3*Pi/ω},

{(x0 - *d)* [ω *t] - d, 3* /ω t < * /ω}},

(x0 - *d)]
Now, when we plot x(t), we get

In[124]:= in = 1;

[xFricDamp[2, 0.2, in, t], {t, 0, * / in}]

Out[125]=

5 10 15 25

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

24 CHAPTER 2. DIFFERENTIAL EQUATIONS

An Introduction to Tables and Lists

Defining four “pieces” of a piecewise function in Mathematica is no problem, but defining too many more
than that would be extremely tedious. Fortunately, Mathematica has tools for creating lists which make this
task far less time-consuming. Perhaps the most useful of these tools is the Table function. To get a sense of
how Table works, it’s best to start with an example. Let’s say we wanted to generate a list of the squares
of the integers from 1 to 10. The syntax for this is

In[126]:= Table[n^2, {n, 10}]

Out[126]= {1, 49, 64, 81, 100}
The symbol n in this construction functions like an iterator. The second argument of Table is a three-
element list which specifies the name of this iterator variable, the initial value ni we want this variable to
take, and the final value to which we want the variable. The first element in the list that Table generates as
its output is simply the first argument of Table evaluated at the initial value of the iterator variable n. The
next element in that list is the first argument of Table evaluated at n = ni + 1, and so on until n reaches
the specified final value and the evaluation stops.

In the above example, the first argument of Table was a simple function of the iterator variable n, but
this argument can take other forms as well. For example, we could set the first argument of Table to be a
list. Thus, we could generate a set of ordered pairs of integers and their squares by entering

In[127]:= Table[{n, n^2}, {n, 10}]

Out[127]=

1 1

2 4

9

4 16

5

6

7 49

8 64

9 81

10 100
We can use this same syntax to create a set of “pieces” to use in defining a piecewise function without too
much tedium or hassle. For example, we can define a piecewise solution for the frictionally-damped harmonic
oscillator that extends all the way out to t = 4T by first using Table to generate a list of functional forms
and intervals:

25

In[134]:= Pieces =

Table[{(x0 - (2*n - 1)*)* [*t] - 1) n* ,

(n 1)* / t < n* / }, {n, 1, }]

Out[134]=

d + (- d) cos(tω) 0 ≤ t < π

ω

(x0 - 3 d) cos(tω) - d π

ω
≤ t < 2 π

ω

d + (x0 - 5 d) cos(tω) 2 π

ω
≤ t < 3 π

ω

(x0 - 7 d) cos(tω) - d 3 π

ω
≤ t < 4 π

ω

d + (x0 - 9 d) cos(tω) 4 π

ω
≤ t < 5 π

ω

(x0 - 11 d) cos(tω) - d 5 π

ω
≤ t < 6 π

ω

d + (x0 - 13 d) cos(tω) 6 π

ω
≤ t < 7 π

ω

(x0 - 15 d) cos(tω) - d 7 π

ω
≤ t < 8 π

ω

We can now use this list as the argument of Piecewise to redefine our piecewise function xFricDamp by
entering

In[132]:= xFricDamp[x0_, d_, ω_, t_] := Evaluate[Piecewise[Pieces]]
Note that once again, we need to use Evaluate to force Mathematica to assign values to the symbols we’ve
used in the list we fed to the Piecewise function. Now we can plot our piecewise solution for x(t) all the
way out to t = 4T :

In[136]:= in = 1;

[xFricDamp[3, 0.1, in, t], {t, 0, * / in}]

Out[137]=

5 10 15 20 25

-3

-2

-1

1

2

3

Chapter 3

Linear Algebra

Vectors and Matrices as Lists

In Chapter 2, we saw how to define a list in Mathematica. Lists are used in Mathematica for a variety of
things, and one of their most important applications is constructing vectors and matrices. For example, to
define a three-component vector ~v = 3̂i− 2̂i+ 2k̂, we would write

In[91]:= v1 = {3, -1, 2}

{ -1, }
Likewise, we can represent a matrix M as a nested list. For example,

In[92]:= M = {{1, 0, 0}, {2, 0, -1}, 1, 0, 3}}

Out[92]=

1 0 0

2 0 -1

-1 0 3

Now that we’ve seen how to represent vectors and matrices in Mathematica, let’s see what we can do
with them. First of all, we might want to pick out a particular component of a vector or a particular entry
in a matrix. This is simply a matter of picking an element out of the corresponding list or nested list —
something we already learned how to do in Chapter 2. In addition, we can also use Mathematica to perform
a variety of other vector operations. For example, if we define a second vector ~w as follows

In[94]:= w = {0, 2, 2}

Out[94]= {0, }
we can take the dot product of this new vector with ~v using the following syntax

In[96]:=

Out[96]= 2

The cross product of two three-component vectors can be obtained using the built-in function Cross:

In[141]:= Cross[v,]

Out[141]= {-6, -6, 6}

The same syntax that is used for the dot product of two vectors is also used for matrix multiplication.

26

27

For example, if I wanted to multiply the vector ~v by our matrix M on the left in order to obtain another
vector, I would write

In[97]:=

Out[97]= { 4, }
Likewise, if I wanted to multiply the matrix M by itself in order to obtain another matrix, I would write

In[138]:=

Out[138]=

1 0 0

3 0 -3

-4 0 9

Mathematica includes a number of built-in functions useful for manipulating matrices. The most com-
monly used functions of this sort are listed below.

Conjugate[x]

Transpose[x]

ConjugateTranspose[x]

Det[x]

Tr[x]

Eigenvalues[x]

Eigenvectors[x]

Complex conjugate of a matrix (or a number)

Transpose of a matrix

Conjugate transpose (i.e., Hermitian Conjugate)

Determinant

Trace

Eigenvalues

Eigenvectors

The output of most of these functions is fairly self-explanatory; however, the output of both Eigenvalues

and Eigenvectors requires some additional clarification. The function Eigenvalues returns a list whose
elements are the eigenvalues of the (square) matrix on which it acts. For example,

In[145]:= Eigenvalues[M]

Out[145]= { 1, 0}
The function Eigenvectors returns a list whose elements are the eigenvectors of the matrix on which it acts.
Since each eigenvector is itself a list, the output of Eigenvectors is a nested list. By default, Mathematica
displays this nested list as a matrix. For example, the eigenvectors of our matrix M are displayed as follows

In[147]:= Eigenvectors[M]

Out[147]=

0 -1 3

2 3 1

0 1 0

Each row of this output matrix corresponds to a different eigenvector. The set of numbers appearing in a
given row are the components of that eigenvector. If we want to pick out a single eigenvector from this list,
we can do so in the usual way. For example, the three individual eigenvectors of M are M as

28 CHAPTER 3. LINEAR ALGEBRA

In[152]:= evec1 = Eigenvectors[M][[1]]

evec2 = Eigenvectors[M][[2]]

evec3 = Eigenvectors[M][[3]]

Out[152]= {0, -1, }

Out[153]= { 1}

Out[154]= {0, 1, 0}

One important caveat about the Eigenvectors function is that the eigenvalues it outputs are in general
not normalized:

In[156]:= evec1.evec1

Out[156]= 10

Thus, if you want a set of normalized eigenvectors for a given matrix, you’re going to have to normalize
them yourself. For example, if I want to normalize the first eigenvector ~e1 from the list of eigenvectors of M
above, I would write

In[164]:= evec1norm = evec1/Sqrt[evec1.evec1]

Out[164]= 0, - 1

10
,

10

Indeed, we can easily verify that this new eigenvector is properly normalized:

In[165]:= evec1norm.evec1norm

Out[165]= 1

