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Chapter 1

Simple Harmonic Motion

• The Physics: Stable and unstable equilibrium, springs and simple harmonic motion, state space, LC
circuits, the energetics of oscillation

• The Math: Differential equations, initial conditions

.

1.1 Equilibrium, Restoring Forces, and Periodic Motion

Periodic motion — motion that repeats itself in finite time — is ubiquitous in nature. Objects shake back
and forth when we bump into them; automobile engines, cell phones, drum heads, hummingbirds’ wings,
and audio speakers vibrate; rocking chairs rock; pendulums swing back and forth; and coffee sloshes back
and forth in a cup after that cup is set down on a table. The electrical current used to power anything you
might plug into a wall oscillates back and forth in a sinusoidal pattern 60 times each second. Nearly every
medium of communication over distance relies on some sort of wave to transmit information, from direct
speech (sound waves) to radio, television, and cell phones (electromagnetic waves).

Why is periodic motion such a common phenomenon? The reason is that oscillations are what generically
happens when a system in a stable equilibrium state gets disturbed a little bit. In order to clarify precisely
what this statement means, however, we’re going to have to go into a little bit more detail about what we
mean by “stable,” “equilibrium,” and “disturbed.”

First, let’s review what we mean by equilibrium. A rigid body is said to be in mechanical equilibrium

if it is not accelerating. The acceleration of such a body is related to the force acting on it by Newton’s
Second Law. For example, in a one-dimensional system, this relationship takes the form

F = ma = m
d2x

dt2
, (1.1)

where x is the position of the body, m is its mass, and t is time. A body in mechanical equilibrium is
therefore one on which the net force is zero.1

Two examples of systems in mechanical equilibrium are illustrated in Fig. 1.1. The diagram on the left
shows a ball at rest at the bottom of a valley, while the diagram on the right shows a similar ball at rest
at the top of a hill. In both of these situations, the gravitational force Fg = −mg and the normal force
FN = mg are equal and opposite at the point where the ball is located, so the net force acting on the ball
is zero.

Now let’s review what we mean by “disturbance” and “stable.” Nature is full of effects that disturb
physical systems away from equilibrium. For example, in each of the situations illustrated in Fig. 1.1, a gust
of wind might blow, an insect might land on the ball, a leaf might fall on it, raindrops might strike it, the
ground might shift a little bit, someone or something might jostle it accidentally, and so on. However, the

1In the generalization of this principle to motion in more than one dimension, in which case rotation is possible, the net
torque on the body must also vanish.

4



1.2. SIMPLE HARMONIC OSCILLATOR 5

Figure 1.1: Examples of stable and unstable equilibrium. The diagram on the left shows a stable equilibrium
state. In this case, the net force which acts on the ball when it moves away from its equilibrium position acts
to drive it back toward that equilibrium position. The diagram on the right shows an unstable equilibrium
state. In this case, the net force which acts on the ball when it moves away from its equilibrium position
serves to drive it farther away from that equilibrium position.

two systems in this figure respond to these disturbances in very different ways. In the diagram on the left,
the net force which acts on the ball when it is displaced slightly from its equilibrium position always serves
to accelerate it back toward that equilibrium position. A force that serves to “correct” for any departure
from equilibrium in this way is called a restoring force, an equilibrium state which is robust against small
disturbances because of such “corrections” is called stable.2 By contrast, in the diagram on the right, the
force which acts on the ball when it is displaced from its equilibrium position accelerates it in a direction
further away from that position. This precarious situation is an example of an system with an unstable

equilibrium state.

While a restoring force in a system with a stable equilibrium state acts drive the system back toward
that equilibrium state, that doesn’t mean that it causes the system to return promptly to that equilibrium
state and stop. For example, when the ball in the left diagram of Fig. 1.1 rolls back toward its equilibrium
position at the bottom of the valley under the influence of the restoring force, it acquires momentum in the
process. As a result, the ball will “overshoot” and roll right past the equilibrium point a the bottom of the
valley because of inertia — i.e., the tendency of an object to oppose change in its motion. It will continue
rolling up the other side of the valley until the restoring force overcomes that inertial tendency and drives
it back down toward the equilibrium position again, and the process repeats itself. This interplay between
the action of the restoring force to drive the system toward equilibrium and and the inertial tendency of
the system to remain in motion is what gives rise to oscillations. Indeed, oscillations can arise in just about
any physical system in which a stable equilibrium state exists and in which that equilibrium is disturbed,
provided that the disturbance is sufficiently small.3

That said, oscillations usually don’t last forever. Nature is full of dissipative forces (e.g., friction and air
resistance) by which oscillating systems lose energy to their surroundings and eventually settles back into
its equilibrium state. Over the course of the semester, we’ll examine these effects too. For the moment,
however, we’re going to focus on what is probably the simplest and arguably the most important physical
system which exhibits periodic motion: the simple harmonic oscillator.

1.2 Simple Harmonic Oscillator

One particularly simple and probably familiar example of a restoring force is the force provided by a spring
on a mass attached to that spring. For an idealized spring, this force is given by Hooke’s Law:4

F = − kx , (1.2)

2As we shall make clear later, this heuristic definition indeed accords with the mathematical definition of a stable equilibrium
point as an point at which the first derivative of the potential energy function U(x) with respect to x vanishes and the second
derivative is positive.

3What “small” means depends on the situation. However, for a system is in stable equilibrium, there is always some regime
in which perturbations away from equilibrium are small.

4The restoring force provided by a real spring deviates from this ideal, but Hooke’s law is a very good approximation in a
wide variety of cases.
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where k is a constant parameter (commonly called the “spring constant”) with units5

[k] =
Newton

Meter
. (1.3)

The negative sign in Eq. (1.2) is really what makes this a restoring force. I the mass is displaced in the
positive direction then the force acts in the negative direction, accelerating it back towards its equilibrium
position. Conversely, if the mass is displaced in the negative direction, the force acts in the positive direction,
one again accelerating it back towards its equilibrium position.

m

k

x

Figure 1.2: A mass m attached to a spring with spring constant k.

When we use Newton’s Second Law to relate the force given by Hooke’s law to the acceleration of the
mass m attached to the spring, we get a differential equation which relates the second derivative of x (with
respect to time t) to x itself:

m
d2x

dt2
= − kx . (1.4)

This is the equation of motion for the mass m attached to the spring.

d2x

dt2
= − k

m
x , (1.5)

Figure 1.3: Illustration of the solution x(t) to the equation of motion for a simple harmonic oscillator. The
results shown here correspond to one particular choice of the parameters A, φ, and ω.

What do the solutions to this equation of motion — i.e., the set of possible functions x(t) which describe
how the position of the mass attached to the spring evolves in time — look like? Well, Eq. (1.5) stipulates

5We will frequently use the notation [X] throughout these lecture notes to indicate the units of the quantity X.
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that each solution must be a function whose second derivative is equal to the function itself times a negative
constant. You can easily verify for yourself by plugging that any function of the form

x(t) = A cos(ωt+ φ) (1.6)

satisfies Eq. (1.5), where we have defined

ω ≡
√

k

m
. (1.7)

The parameters A and φ in this equation are arbitrary constants in the sense that x(t) will still satisfy
Eq. (1.5) no matter what values we happen to assign these parameters. In fact, this solution turns out to be
the most general solution to the equation of motion for a simple harmonic oscillator. As we shall see later
in this course, the fact that there are two free parameters A and φ is intimately related to the fact that the
equation of motion involves a second derivative. An solution of this form is illustrated in Fig. 1.3.

In addition to having a function x(t) which describes the position of the mass in our simple harmonic
oscillator as a function of time, it is also useful to have a function v(t) which describes its velocity. This
is easily done: since the velocity is simply the instantaneous derivative of the position function x(t) with
respect to t, we find that

v(t) =
dx

dt
= −Aω sin(ωt+ φ) . (1.8)

Perhaps the most important aspect of the solution for x(t) in Eq. (1.6), however, is that this solution is
periodic. Indeed, since the cosine function has the property that cos(θ+2π) = cos(θ) for any real angle θ, we
see that the mass will return to exactly the same position in which it started in finite time. Since this is the
case, it might be a good idea to step back and review some of the quantities which are useful in describing
periodic motion.

• The constant A represents the amplitude of the oscillation: the greatest displacement away from
equilibrium that the mass m ever experiences during is oscillation.

• The period of oscillation T is defined as the time it takes for the system to go through one complete
cycle of motion and return to the same state — i.e., to the same position x and the same velocity v it
started with. Since the cosine function has the property that cos(θ + 2π) = cos(θ) for any real angle
θ, we find that that

A cos[ω(t+ T ) + φ] = A cos(ωt+ φ+ 2π)→ ωT = 2π . (1.9)

Thus, the period is just

T =
2π

ω
. (1.10)

It’s important to remember that the system being in the same state means more than merely returning
to the same position. For example, consider that the mass on the spring in the simple harmonic
oscillator shown in Fig. 1.2 passes through the point x = 0 twice during each cycle of oscillation.
However, in one of these cases the mass is moving to the left, whereas in the other it’s moving to the
right. This idea of a “state” of the system characterized by the values of x(t) and v(t) together is
actually an important one for other reasons as well, and we’ll have more to say about it in Sect. 1.6.

• The frequency of oscillation f is number of complete cycles the system makes per unit time. In other
words, it’s just the inverse of the period:

f =
1

T
=

ω

2π
. (1.11)

The frequency has units of inverse seconds or cycles per second. The SI unit of frequency is the hertz,
which is equal to one cycle per second.

• The angular frequency is the number of radians that the system passes through per unit time. Since
a full cycle is just 2π radians, the angular frequency is just 2πf , or ω itself. Take care not to confuse f
and ω. Even though it is common practice to refer to ω as the “oscillator frequency” or even just the
“frequency” (and I confess that I will do this a great deal in these notes), these quantities represent
different things.
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• Finally, the constant φ in Eq. (1.5) is known as the phase of the oscillation. The phase encodes
information about the times at which the system reaches its peak displacement x(t) = A. In particular
since the cosine function reaches a maximum at cos(0) = 1, the peak displacement occurs when
ωtpeak + φ = 0, or

tpeak = − φ/ω. (1.12)

Note that tpeak doesn’t depend on what the peak displacement A actually is, but only on φ and ω.
Note also that since cos(ωt + φ + 2π) = cos(ωt + φ), an oscillation with a phase φ and an oscillation
with a phase φ′ = φ+ 2π represent exactly the physics. In other words, φ can always be restricted to
the range 0 ≤ φ < 2π without any loss of generality.

Finally, it’s important to emphasize that while Eq. (1.6) is indeed the most general solution to the
equation of motion for a simple harmonic oscillator, there are a lot of other ways of parameterizing this
solution. Many of these look like completely independent solutions, but in fact are just clever ways of
rewriting the same thing. For example, any function of the form

x(t) = B sin(ωt+ δ) , (1.13)

where B and δ are arbitrary constants, also satisfies Eq. (1.5). However, this doesn’t actually turn out
to be a distinct solution from the solution in Eq. (1.6). The sine and cosine functions are related by
sin(θ) = cos(θ + π/2) for any angle θ, so any sine function of the form in Eq. (1.13) is actually completely
equivalent to a cosine function of the form in Eq. (1.6) with A = B and φ = δ + π/2.

There are plenty of other ways of parameterizing the general solution to Eq. (1.5) as well (see, for example,
Problem 2), but in fact these solutions are all equivalent.

1.3 Initial Conditions

Up to this point, we still have not said anything about how to determine the values for the amplitude A
and phase φ appearing in Eq. (1.6). Indeed, the equation of motion gives us no guidance here, since our
general solution for x(t) satisfies that equation no matter what values of A and φ we choose. In order to
determine what the values of A and phase φ are, we need some additional information about the physical
system we’re studying. This information comes from the initial conditions which characterize the system
at the moment when the mass m attached to the spring begins to oscillate. It is convenient to call that time
t = 0, so that we “start the clock” when the mass starts oscillating.

Let’s say that we release the mass from the position x0 at t = 0. Perhaps we also give the block a push
in one direction or the other as we release it so that it starts with an initial velocity v0. Substituting our
initial conditions x(0) = x0 and ẋ(0) = v0 into Eqs. (1.6) and (1.8), we find that

x0 = A cos(φ) (1.14)

v0 = −Aω sin(φ) (1.15)

If we solve this system of equation equations for A and φ, we find that the amplitude of oscillation for an
initial displacement x0 and an initial velocity v0 is

A =

√
x2
0 +

v20
ω2

. (1.16)

Similarly, we also find that the phase of the oscillation is

φ = − arctan

(
v0
ωx0

)
. (1.17)
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φ

θ
t = 0

t

y

x

Figure 1.4: The motion of a dot marked on the rim of a flat disc with radius A which rotates counterclockwise
with constant angular velocity ω. At time t = 0, the dot lies at an angle φ from the x axis.

1.4 Relation to Cirular Motion

There is a mathematical parallel between uniform circular motion and simple harmonic motion that is worth
mentioning at this point. To illustrate this, let’s consider the motion of a small dot drawn on the rim of a
flat disc with radius A which rotates counterclockwise with constant angular velocity ω, as shown in Fig. 1.4.
Moreover, let’s say the dot is at an at the angle φ at the time t = 0 when the disc begins rotating, so that
the angle that it makes with the x-axis as a function of time is

θ = ωt+ φ . (1.18)

Let us ignore the motion in the y direction and focus only on the x coordinate. This coordinate evolves with
time according to the relation

x(t) = A cos(ωt+ φ) . (1.19)

This is completely identical to the formula in Eq. (1.6) for the position of the mass attached to the spring in
a simple harmonic oscillator. We therefore see that if we set an object in uniform circular motion and then
look at it edge-on so that we only observe its motion along one axis, this motion will be identical to a mass
attached to a spring.

This correspondence provides a nice way to think about many of the features of our solution for the
simple harmonic oscillator. While it’s important to keep in mind that it is only a mathematical analogy, it
it often easier to think of the angular frequency ω of a simple harmonic oscillator as the angular speed (i.e.,
the magnitude of the angular velocity) with which the corresponding circle rotates. Likewise, it’s also often
easier to think of the phase φ as nothing more than the angle at which the object begins its motion on that
circle at t = 0. For these two insights alone, the correspondence is with mentioning. The correspondence
will also become even more useful later on, when we begin using complex numbers to describe oscillations.

1.5 Simple Harmonic Oscillators in Disguise

A mass oscillating on a spring in the absence of friction is probably the most familiar example of simple
harmonic motion. However, it turns out that a lot of other physical systems are governed by an equation of
motion that has exactly the same mathematical form as Eq. (1.5).

One example of a system which exhibits simple harmonic motion is the charge on a parallel-plate capacitor
in an LC circuit — i.e., a simple circuit which consists of an inductor and a parallel-plate capacitor, as shown
in Fig. 1.5. The capacitor is a device which stores equal and opposite charges on its two plates. The capacitor
equation

Q = V C (1.20)
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C

L

I

+Q−Q

Figure 1.5: Diagram of a simple LC circuit. The direction of the current through the charges on the capacitor
plates are indicated.

relates the potential difference V between the plates to the charge Q stored on the positive plate. The
constant of proportionality C is called the capacitance, which depends on the size and geometry of the
plates, as well as the properties of whatever material lies between them. The inductor consists of a coil
of wire. When current flows through the wire, it produces a magnetic flux through the wire. Whenever
the current I flowing through the wire changes, the magnetic flux through the coil changes as well. This
generates an EMF6 in the wire

E = − L
dI

dt
(1.21)

where L is the inductance L of the wire — a parameter that depends on the geometry of the coil, the
number of turns of wire in it, etc.. The minus sign in Eq. (1.21) indicates that the EMF acts in the direction
which opposes the change in the current.

How does charge flow in an LC circuit? Kirchhoff’s second law (or loop rule) tells us that the sum of the
potential drop across the inductor and potential drop across the capacitor must sum to zero:

L
dI

dt
+

Q

C
= 0 . (1.22)

Conservation of electric charge in the circuit tells us that if a current is flowing through the circuit, there
must be a corresponding change in the charge Q on the capacitor:

I =
dQ

dt
. (1.23)

Substituting this into Eq. (1.22) and rearranging things a bit, we arrive at the following differential equation
for the charge Q stored on the capacitor plates:

d2Q

dt2
= − 1

LC
Q . (1.24)

This equation for Q(t) has precisely the same mathematical form as the differential equation Eq. (1.5) for
the position x(t) of a mass attached to a spring! It therefore follows that Q(t) likewise oscillates in time and
is given by

Q(t) = A cos(ωt+ φ) . (1.25)

with an oscillator frequency

ω =

√
1

LC
. (1.26)

6This footnote contains the obligatory disclaimer that the term EMF or “electromotive force,” is a horrible misnomer. As
you have probably already heard countless times in other physics classes you’ve taken, an EMF is not a force at all and has the
units of electric potential.
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We see that in this circuit, the inductance L plays the role of the mass m in Eq. (1.5) and 1/C plays
the role of the spring constant k. These analogies actually make good physical sense. The inductance L
quantifies the “inertial” tendency of the inducting coil to resist a change in the current, just as the mass m
of an object quantifies its tendency the to resist a change in its state of motion. Likewise, the electrostatic
force exerted by the equal and opposite charges +Q and −Q on the capacitor plates provides the restoring
force which always serves to drive the system toward the equilibrium state where Q = 0. This is completely
analogous to the function that the spring performs in Fig. 1.2. However, Eq. (1.20) tell us us that the greater
C is, the smaller the potential difference is between the plates for a given value of Q, and hence the smaller
the restoring force. This is why it’s the inverse of C in an LC circuit that plays an analogous role to the
spring constant k.

There are other physical systems which are also really simple harmonic oscillators in disguise — though
admittedly examples are scarce and usually fairly contrived. One example (see Problem 6) involves a buoy
bobbing up and down in down in a body of water. Nevertheless, the simple harmonic oscillator turns out to
be one of the most important physical systems in all of physics.

The reason is that while systems which are mathematically precisely identical to a simple harmonic
oscillator are few and far between, systems which are approximately equivalent to a simple harmonic oscillator
arise almost everywhere in nature. In fact, as we shall see in the next lecture, a physical system with a
stable equilibrium solution almost always behaves like a simple harmonic oscillator when the departure from
equilibrium is sufficiently small.

1.6 State Space

In Sect. 1.3, we saw that the behavior of a simple harmonic oscillator depends not only on the its initial
position x0, but also on its initial velocity v0. In fact, if you know the position x and velocity v at any time
t, you have sufficient information to be able to trace the future trajectory of the oscillator.

The concept of state space provides a useful way of visualizing how a physical system evolves from
an arbitrary initial state. A state-space diagram is a plot in which the axes represent not x and t, but
rather x and ẋ = v. Each point in state space represents a distinct state of the system — i.e., a particular
combination of x and v. As the system evolves in time and the values of x and v change, the system traces
out a continuous curve in state space.

Some examples of such curves are shown in Fig. 1.6. The curves in the left panel of the figure correspond
to an oscillator with a frequency ω = 0.5; the ones in the right panel correspond to an oscillator with a
frequency ω = 2. The different curves in each panel differ only in terms of the initial conditions — i.e., the
values of x0 and v0. These values, which indicate the “starting point” for the system at t = 0, are indicated
with a dot on each curve. The fact that the state-space trajectories are closed indicates that the motion is
periodic. In particular, it reflects the fact that the system returns to the same state — the same combination
of x and v — in finite time. It is not difficult to show that these trajectories are, in fact, ellipses.

( x
A

)2
+
( v

Aω

)2
= cos2(ωt+ φ) + sin2(ωt+ φ) = 1 . (1.27)

This is the defining equation for an ellipse whose semimajor and semiminor axes have lengths A and Aω
(not necessarily respectively: which axis is which depends on the value of ω).

While the direction in which the system evolves along that curve as t increases is not indicated in the
figure, we can infer that direction from the fact that v(t) is just the time derivative of x(t). If the velocity
v(t) is positive, that means x(t) is increasing, and the the location of the system in state space is evolving
toward the right. Likewise, if v is negative, x is decreasing, and the location of the system is evolving toward
the left. It therefore follows that the system always evolves clockwise in state space along its state-space
trajectory. This isn’t unique to the simple harmonic oscillator either, but is rather a general property of the
way systems evolve in state space.
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Figure 1.6: Some examples of trajectories in the state space for a simple harmonic oscillator that result
from different choices of initial conditions. The dot on each curve indicates the initial state (x0, v0) in which
the system starts at t = 0. From that initial point, the system proceeds in a clockwise direction along the
corresponding curve, as discussed in the text. The diagram on the left illustrates the state-space trajectories
for an oscillator with ω = 0.5; the one on the right illustrates the trajectories for ω = 2.

1.7 Energy in the Harmonic Oscillator

The fact that the motion of our simple harmonic oscillator is periodic and fact that its trajectories in state
space are closed is intimately related to the conservation of mechanical energy in the system.

The kinetic energy of the mass attached to the spring is defined in terms of its mass m and its velocity
v in the usual way:

K =
1

2
mv2 . (1.28)

For a simple harmonic oscillator, the velocity is given by Eq. (1.8), and so the kinetic energy is

K =
1

2
mA2ω2 sin2(ωt+ φ)

=
1

2
kA2 sin2(ωt+ φ) . (1.29)

In addition to kinetic energy, we can also define a potential energy for the system. This is possible
because the restoring force provided by the spring is a conservative force. Recall that a conservative force
is one for which the work done by the force on a particle moving from one point xa to another xb doesn’t
depend on the path the particle takes. A potential energy function U can always be associated with such a
force. It turns out that for a particle moving in only one dimension, any force which depends only on the
particle’s position is conservative. The potential energy function for such a force is

U(x) = −
∫ 0

x

F (x′)dx′ . (1.30)

For a simple harmonic oscillator, F = −kx, and so we have

U(x) =

∫ 0

x

kx′dx′ =
1

2
kx2 . (1.31)
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The total energy in the system is just the sum of the kinetic and potential contributions:

Etot =
1

2
kA2

[
sin2(ωt+ φ) + cos2(ωt+ φ)

]

=
1

2
kA2 . (1.32)

This is independent of t, which tells us that the total energy of the system is conserved. Again, this energy
conservation is not an accident, but rather a consequence of the fact that the restoring force supplied by the
spring is a conservative force for which a potential function is well-defined. To see this, we begin by noting
that by definition, energy conservation means that

dEtot

dt
=

dK

dt
+

dU

dt
= 0 . (1.33)

Plugging in the general forms for K and U in Eq. (1.28) and Eq. (1.30) and using the chain rule on dU/dt
yields

0 =
1

2
m

(
2v

dv

dt

)
− dU

dx

dx

dt
= mva− Fv = v(ma− F ) . (1.34)

Newton’s Second Law tells us that F = ma, so dEtot/dt indeed vanishes, implying that the total energy of
the system is conserved.

Figure 1.7: The kinetic and potential energies K(x) (blue curve) and U(x) (black curve) shown as functions
of x for simple harmonic motion with an amplitude A. The red dots indicate the turning points at ±A
where the direction of motion reverses. The horizontal line corresponds to the value of the total energy
Etot = K(x) + U(x) = kA2/2 for the system.

In Fig. 1.7, we show the kinetic and potential energies K(x) and U(x) as functions of x for simple
harmonic motion with amplitude A. The red dots on the potential-energy curve represent the turning points
at which the motion reverses direction. As can be seen in the plot, K(x) vanishes at these points because
v = 0 there, while U(x) = Etot is at its maximum. The motion is confined to the region between the vertical
dashed lines.

Problems

1. Show explicitly that the solution for x(t) in Eq. (1.6) satisfies the equation of motion in Eq. (1.5).
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2. Another way of writing the general solution to the equation of motion Eq. (1.5) for a simple harmonic
oscillator is

x(t) = C1 cos(ωt) + C2 sin(ωt) , (1.35)

where C1 and C2 are constants.

(a) Show explicitly that this expression for x(t) is in fact a solution to Eq. (1.5).

(b) Show that this solution is in fact equivalent to the more familiar form for x(t) given in Eq. (1.6).
What are the constants C1 and C2 in terms of A and φ?

3. A 5 kg block of metal is attached to a spring with a spring constant k = 8.5 N/m as in Fig. 1.2. You
pull the block 80 cm away from its equilibrium position, and as you release it, you give it a push back
toward its equilibrium position so that it is initially moving at 2 m/s.

(a) Find the amplitude A, the phase φ, and the period T of oscillation.

(b) Draw a graph of the position of the block as a function of time.

4. A mass m is suspended from a vertical spring with spring constant k, as illustrated in Fig. 1.8.

(a) In terms of m, k, and the acceleration due to gravity g, find the distance d by which the spring
will be stretched from its equilibrium length when the mass is hanging at rest.

(b) Consider what happens if the mass is now pulled downwards an extra distance ℓ and released.
Write down the equation of motion for the block the follows from Newton’s Second Law, including
both the gravitational force and the force provided by the spring. Make sure you are clear about
which direction you are choosing as positive and what this implies for the signs of the gravitational
and spring forces. Your differential equation will not look exactly like Eq. (1.5).

(c) Show that the solution to this equation of motion has the form x(t) = A cos(ωt+ φ) + C, where
C is a constant.

(d) Express the period T of the resulting motion in terms of the displacement d that you found in
part a and the acceleration due to gravity g.

m

k

Figure 1.8: A mass m suspended vertically from a spring with spring constant k.

5. Find the frequency of oscillation for a block of mass m attached to two springs with equal spring
constant k attached “in parallel” and “in series” as shown in Fig. 1.9, assuming that both springs have
the same equilibrium length.

6. A cylindrical buoy with uniform density and radius r floats with ℓ of its total length submerged in
water. If you push down on the buoy and release it, it will bob up and down vertically. Find the
frequency of the oscillatory motion in terms of ℓ and the acceleration due to gravity g, assuming that
the motion is purely in the vertical direction. Recall that an object submerged in a fluid feels a buoyant
force given by ρfV g where ρf is the density of the fluid and V is the volume of the fluid displaced.
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m
k

k

m
k k

Figure 1.9: Simple harmonic oscillators with springs attached “in parallel” (left panel) and “in series” (right
panel).

Figure 1.10: A cylindrical buoy bobbing up and down near the surface of a calm lake.

7. Show that the total energy stored in the electromagnetic fields in an LC circuit like that depicted in
Fig. 1.5 is constant in time. Recall that the energy stored in the electric field beween the plates of a
parallel-plate capacitor is 1

2Q
2/C and the energy stored in the magnetic field of an inductor is 1

2LI
2.

8. A dielectric with a dielectric constant ǫ = 5 is inserted between the plates of a parallel-plate capacitor
in an LC circuit containing a capacitor with capacitance C and an inductor with inductance L. What
effect does this have on the frequency of oscillation?



Chapter 2

Simple Harmonic Motion

• The physics: Simple pendulum, the harmonic approximation

• The math: Taylor and Maclaurin series, tests of convergence and remainders

2.1 Motivational Example: The Motion of a Simple Pendulum

At the end of the last section, I mentioned that a wide variety of physical systems behave approximately like
a simple harmonic oscillator when the departure from equilibrium is small. In this section, we’ll examine
why that’s the case. We’ll begin with a simple example first, and then examine the mathematical machinery
for characterizing small deviations in more generality.

θ

ℓ

y

(ℓ− y)

x
m

Figure 2.1: A simple pendulum consisting of a mass m attached to a rigid rod of length ℓ which swings back
and forth on a pivot.

Let’s begin by considering the motion of a simple pendulum consisting of a mass m attached to a rigid
rod of length ℓ and negligible mass which swings freely back and forth on a pivot, as shown in Fig. 2.1. Once
again, our goal will be to derive the equation of motion for the system and try to find a solution to that
equation. We also want to compare that equation to the equation of motion for a simple harmonic oscillator
that we saw in the previous section.

Once again, our derivation of this equation of motion begins with Newton’s Second Law. For angular
motion, Newton’s Second Law law takes the form

τ = Iα (2.1)

16
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where τ is the torque around the axis of rotation, I is the moment of inertia with respect to that axis, and
α is the angular acceleration. In this case, the force acting on the mass at the end of pendulum is gravity,
so τ = −mgℓ sin θ. The moment of inertia for the mass is just I = mℓ2. Since the angular acceleration, by
definition, is just α = d2θ/dt2, the equation of motion is

mℓ2
d2θ

dt2
= −mgℓ sin θ . (2.2)

We can put this equation of motion for θ in a slightly more revealing form by moving all the constants to
the right-hand side:

d2θ

dt2
= − g

ℓ
sin θ , (2.3)

This is clearly not the equation of motion for a simple harmonic oscillator. However, as we shall soon
demonstrate, it turns out that sin θ ≈ θ for very small θ. This means that as long as θ remains very small
as the system evolves over time, the approximate equation of motion that we obtain in this regime, which is

d2θ

dt2
≈ − g

ℓ
θ + [small corrections] , (2.4)

does indeed have the simple-harmonic-oscillator form, with an oscillator frequency ω =
√
g/ℓ. However, it’s

only truly mathematically equivalent to a simple harmonic oscillator in the limit where θ → 0 — meaning
either that the angle is zero (no motion)! The questions we should be asking ourselves, then, are what the
“small correction” terms in Eq. (2.4) look like for small but non-zero θ.

Before we move on to discussing these correction terms, it’s useful to note that one can also express
the approximate equation of motion for the mass at the end of the pendulum in terms of the rectilinear
coordinates x and y indicated in Fig. 2.1. Indeed, these coordinates are related to the angular coordinate θ
by the relations

x = ℓ sin θ , (ℓ− y) = ℓ cos θ . (2.5)

Moreover, while both the x and y coordinates of the mass at the end of the pendulum change as it moves,
we still need only one variable to completely characterize its motion. This is because the length of the rod
is fixed, so x and y are related to each other by the constraint

ℓ2 = x2 + (ℓ− y)2 . (2.6)

Solving this equation for y gives us the equation

y = ℓ−
√
ℓ2 − x2 . (2.7)

This means that we only need to focus on the motion of the mass in the x direction, since the value of y is
completely specified by the value of x.

The next step is to express the angular acceleration d2θ/dt2 in terms of x and its derivatives. However,
this is just a matter of inverting the relation in Eq. (2.5) and evaluating the time derivatives:

d2θ

dt2
=

d

dt

[
d

dt
arcsin

(x
ℓ

)]
=

d

dt

[
1√

ℓ2 − x2

dx

dt

]
=

1√
ℓ2 − x2

d2x

dt2
+

x

(ℓ2 − x2)3/2

(
dx

dt

)2

Substituting this expression into Eq. (2.3), we obtain

1√
ℓ2 − x2

d2x

dt2
+

x

(ℓ2 − x2)3/2

(
dx

dt

)2

= − gx

ℓ2
, (2.8)

Finally, if we rearrange this expression a bit in order to get d2x/dt2 alone on the left-hand side, we find that

d2x

dt2
= − g

ℓ
x

√
1− x2

ℓ2
− x

ℓ2 − x2

(
dx

dt

)2

. (2.9)
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As we might expect, the differential equation in Eq. (2.9) doesn’t resemble the equation of motion for a
simple-harmonic-oscillator any more than Eq. (2.3) did. However, let’s consider what happens in the small-
angle regime, which corresponds here to the regime in which x is very small compared to ℓ. First of all, in
this regime,

√
1− x2/ℓ2 ≈ 1. Second, we note that the velocity vx = dx/dt must also always be very small

in order for x to remain very small as the system evolves; if vx were very large, that would drive x towards
very large values. Thus, in this regime, we are justified in dropping the second term in Eq. (2.9).1 Thus, in
the x≪ ℓ regime, the equation of motion takes the approximate form

d2x

dt2
≈ − g

ℓ
x + [small corrections] . (2.10)

Once again, we recover the equation for a simple harmonic oscillator with ω =
√
g/ℓ. Once again, however,

it’s only truly mathematically equivalent to a simple harmonic oscillator in the limit where x/ℓ → 0 —
meaning either that the displacement is zero (no motion) or else that the length of the pendulum is infinite!

It is perhaps also worth noting that the second term in Eq. (2.9) that we are neglecting in the x ≪ ℓ
approximation is the term that corresponds to the additional centripetal force. (You may have already
guessed this based on the fact that the term is proportional to the square of a velocity.) Why is this term
negligible? The answer is essentially that for very small x, the mass at the end of the pendulum moves
almost only in the horizontal direction. Indeed, according to Eq. (2.7), the y coordinate remains fixed at ℓ
to a very good approximation.

Since this is the case, if we knew we were going to be working in the x≪ ℓ regime, we could have simply
ignored the centripetal acceleration and set the net force in the radial direction — i.e., the direction parallel
to the rod – equal to zero. There are two forces which contribute to this net force: gravity and the tension
force in the rod. The x and y components of the gravitational force are

Fgrav,x = 0

Fgrav,y = −mg (2.11)

The tension force always acts along the radial direction. If the mass doesn’t accelerate in the radial direction
— which it doesn’t to a very good approximation in the x ≪ ℓ regime — the tension force must exactly
cancel the component of the gravitational force acting in this direction. The magnitude of the tension force
is therefore Ftens = mg cos θ, and the x and y components of this force are

Ftens,x = −mg cos θ sin θ = − mg

ℓ
x

√
1− x2

ℓ2

Ftens,y = mg cos2 θ = mg

(
1− x2

ℓ2

)
. (2.12)

Indeed, in the x ≪ ℓ regime, Ftens,y ≈ mg, which cancels the contribution from Fgrav,y, so in this approxi-
mation, motion occurs only in the x direction to a very good approximation.

Since Fgrav,x = 0, the tension force is the only force acting in the x direction, so Newton’s second law
gives us

d2x

dt2
≈ − g

ℓ
x

√
1− x2

ℓ2
+ (small corrections) . (2.13)

Finally, setting
√
1− x2/ℓ2 ≈ 1 as is appropriate in the x≪ ℓ approximation, we recover the same equation

of motion we had in Eq. (2.10).
We have now seen, in a variety of different ways, how the equation of motion for a simple pendulum

reduces to the equation of motion for a simple harmonic oscillator when θ (or x) is small. However, we have
yet to address what the correction terms in Eq. (2.4) look like for small but non-zero θ and how important
they are in terms of their effect on the motion of the pendulum. In order to address these questions, we now
turn to examine a general method for making approximations of this sort: the method of Taylor series.

1If this makes you uneasy, think about it this way. In the regime in which the system behaves approximately like a harmonic
oscillator with ω =

√

g/ℓ, we have x ≈ A cos(ωt + φ), so the velocity is approximately vx ≈ −Aω sin(ωt + φ). We therefore
have vx = A2ω2 sin2(ωt + φ) = A2ω2[1 − cos2(ωt + φ)] = g(A2 − x2)/ℓ, which means that the second term on the right side
of Eq. (2.9) is suppressed relative to the first term by a factor of (A2 − x2)/(ℓ2 − x2). By assumption, the amplitude of the
oscillation is small, so ℓ ≫ A ≥ x, so we are justified in discarding this term.



2.2. APPROXIMATING FUNCTIONS: TAYLOR SERIES 19

2.2 Approximating Functions: Taylor Series

We are looking for a way of approximating a function f(x) when x is very small. One fruitful first step
would be to figure out a way of expressing f(x) as a power series in x.

f(x) =

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + . . . , (2.14)

where the an are some set of coefficients chosen such that the sum of terms on the right-hand side is equivalent
to the function f(x). Why is it helpful to be able to write f(x) this way? The reason is basically that when
x is small, the partial sum consisting of the first one or two terms in the whole infinite series may be an
excellent approximation to f(x).2

So how do we go about finding the coefficients an in Eq. (2.14)? Well, as a first step, we notice that at
the point x = 0, all of the terms in the sum vanish except for the first one, so it must be true that

a0 = f(0) . (2.15)

So how do we pin down the other terms? The trick is take derivatives of both sides of Eq. (2.14). For
example, taking the first derivative of both sides yields the relation

f ′(x) = a1 + 2a2x+ 3a3x
2 + . . . , (2.16)

where the prime on f ′(x) indicates a derivative with respect to x. Once again, at the point x = 0, all terms
on the right side of this equation vanish except for the first one, so we find that

a1 = f ′(0) . (2.17)

Similarly, taking the second derivative of both sides of Eq. (2.14) yields

f ′′(x) = 2a2 + 6a3x+ 12a4x
2 + . . . , (2.18)

and by again setting x = 0, we find that

a2 =
1

2
f ′′(0) . (2.19)

We can continue to perform this procedure again and again, applying a different number of derivatives
to each side of Eq. (2.14), in order to obtain the rest of the an. As is probably evident by now, the general
formula for an is

an =
1

n!
f (n)(0) , (2.20)

where the notation f (n)(0) means that we take the nth derivative of f(x) and then set x = 0. Thus, the
series expansion of f(x) is given by the general formula

f(x) =

∞∑

n=0

1

n!
f (n)(0)xn . (2.21)

Such a series expansion of f(x) around the point x = 0 is known as the Maclaurin series for f(x). A
Maclaurin series is actually just a specific example of the more general construction known as a Taylor

series, which is an expansion of f(x) around any arbitrary value x = a of its argument. The general formula
for the Taylor-series expansion of f(x) around x = x0 is

f(x) =

∞∑

n=0

1

n!
f (n)(x0)(x − x0)

n . (2.22)

2Later in this course, we will also use series of this sort to find solutions to differential equations, both numerically and
analytically.
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While you can always derive the Taylor-series expansion for any function using Eq. (2.22), there are certain
Taylor series which crop up so frequently in physics applications that they’re probably worth committing to
memory:

sin(x) = x− 1

3!
x3 +

1

5!
x5 + . . . (2.23)

cos(x) = 1− 1

2!
x2 +

1

4!
x4 + . . . (2.24)

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + . . . (2.25)

ln(1 + x) = x− 1

2
x2 +

1

3
x3 + . . . (2.26)

(1 + x)p = 1 + px+
1

2!
p(p− 1)x2 + . . . . (2.27)

2.3 Taylor Series: Applications

Let’s return to the example we were considering in Sect. 2.1 and apply what we now know about Taylor
series to find an approximate form for the function f(x) =

√
1− x2/ℓ2 for small x. The first coefficient a0

in the expansion of this function around x = 0 is simply a0 =
√
1− 0 = 1. The second coefficient is

a1 =

[
d

dx

√
1− x2

ℓ2

]∣∣∣∣∣
x=0

=

[
1√

1− x2/ℓ2
x

ℓ2

]∣∣∣∣∣
x=0

= 0 . (2.28)

The third is

a2 =
1

2!

[
d2

dx2

√
1 +

x2

ℓ2

]∣∣∣∣∣
x=0

=
1

2

[
1√

1− x2/ℓ2
1

ℓ2
− 1

(1− x2/ℓ2)3/2
x2

ℓ4

]∣∣∣∣∣
x=0

=
1

2ℓ2
, (2.29)

and so forth. If we were to continue this procedure explicitly up to a4, we would find that
√
1− x2

ℓ2
= 1− x2

2ℓ2
− x4

8ℓ4
+ . . . (2.30)

We are now able to be more explicit about the size of the “small corrections” in Eq. (2.10). While both
terms on the right-hand side of Eq. (2.9) contribute to these corrections, for purposes of illustration we’ll
concentrate on the corrections from the factor of

√
1 + x2/ℓ2 in the first term. When x≪ ℓ, the magnitude

of each successive term in the Taylor series for
√
1− x2/ℓ2 is absolutely minuscule compared to the term

that came before it. Therefore, in situations in which the displacement of the pendulum from equilibrium
always remains extremely small, we would obtain a good approximation for this restoring-force term by
keeping only the first two terms in Eq. (2.30) and approximating this term as

−g

ℓ
x

(
1− x2

2ℓ2

)
≈ − g

ℓ
x+

g

2ℓ3
x3 . (2.31)

Of course we’d get a slightly more accurate approximation by retaining more terms in this series, but the
operative word is “slightly.”
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2.4 Tests of Convergence

Taylor series, as we shall soon see, are an extremely useful mathematical tool for solving physics problems.
However, there are some limits to their applicability. For one thing, not every function f(x) can be repre-
sented in this manner. First of all, in order for a function to be represented by a Taylor series, f(x) must
satisfy it must be infinitely differentiable in order that all of the coefficients an given by Eq. (2.20) to be
well defined. Moreover, since Eq. (2.22) is an infinite series, there is no guarantee that it converges — i.e.,
that the sum of its terms approaches a finite limiting value. Fortunately, there exist a number of tests to
determine whether or not a series converges, some of the most useful of which I will now describe. In the
descriptions of these tests, we’ll use the symbol bn to denote the nth term in the series we’re considering. Of
course bn = anx

n for a Taylor series, but we want to be as general as possible here because these convergence
tests apply not only to Taylor series, but to other infinite series as well.

The Preliminary Test:
If lim

n→∞
bn 6= 0, meaning that the terms in the series themselves do not tend toward zero, the series

diverges. If lim
n→∞

bn = 0, further tests are needed to determine whether the series converges.

The Integral Test:
In order for this test to be used on a given series, there must exist some finite value of n, which we’ll call

N , above which all of the bn are positive and decreasing — i.e., we must have 0 < bn ≤ bN for n > N . If
this criterion is satisfied, the series converges if the integral

∫ ∞

N

bndn (2.32)

is finite and diverges if it is infinite.3

The Ratio Test:
Define rn to be the absolute value of the ratio of the two successive terms bn+1 and bn in the series:

rn ≡
∣∣∣∣
bn+1

bn

∣∣∣∣ (2.33)

Evaluate rn and take the limit r ≡ lim
n→∞

rn. If r < 1, the series converges. If r > 1, the series does not

converge. If r = 1, the test is inconclusive and you need another test to determine whether or not the series
converges.

Other tests for convergence exist as well, many of which involve performing term-by-term comparisons
with the terms of some other series whose convergence properties you already know. Several of these tests
are discussed, e.g., in Sect. 1.5 - 1.8 of Boas, Mary L., Mathematical Methods in the Physical Sciences , Wiley
2005.

As an example of how these tests work in practice, let’s try using them to determine the convergence
properties of the function ln(1 + x). First, we need to extract a general expression for the terms appearing
in Eq. (2.26). Thus, we note that

ln(1 + x) = x− 1

2
x2 +

1

3
x3 + . . . =

∞∑

n=1

1

n
(−1)n+1xn , (2.34)

so we have

bn =
1

n
(−1)n+1xn . (2.35)

We are now ready to apply the preliminary test. Our results, as you might have expected, depend on the
value of x. For x > 1, we find that the value of bn diverges in the n → ∞ limit, so the series itself must

3The lower limit of integration is essentially irrelevant here, since it’s the behavior of the series as n → ∞ that we’re
interested in. Some texts omit the lower limit completely.
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also diverge. By contrast, lim
n→∞

bn = 0 for −1 ≤ x ≤ 1, so we need to apply more tests. Since the sign of

bn alternates back and forth, there exists no N for which all bn for n > N are positive, to the integral test
can’t be applied here. Applying the ratio test, we find that

rn =

∣∣∣∣
n(−1)n+2xn+1

(n+ 1)(−1)n+1xn

∣∣∣∣ =
n

n+ 1
|x| , (2.36)

and the n→∞ limit of this is

r = lim
n→∞

n

n+ 1
|x| = |x| , (2.37)

so once again, the results of the test depend on the value of x. For |x| > 1, we have r > 1, and so the series
diverges, but we already knew that from the preliminary test. The new piece of information we learn is that
the series must converge for |x| < 1 because r < 1. For |x| = 1, the ratio test is inconclusive, and we’d still
need to apply other tests to see whether the series converges for x = ±1.

A we have seen, the convergence properties of a Taylor series for a given function f(x) frequently depend
on the value of x. The interval of convergence for such a function is the range of values for x for which
the series converges.4 For example, we’ve just proved that the interval of convergence for ln(1 + x) includes
all points between −1 and +1.5

There is one final caveat I should mention about Taylor series. This is that sometimes the Taylor series
for a function f(x) will converge, but it won’t actually converge to the value of the function! A classic
example of a function which exhibits this “sick” behavior is

f(x) = e−1/x2

. (2.38)

This function is zero at x = 0, and so are all of its derivatives f (n)(0), so all of the Taylor-series coefficients
an for this function vanish. However, for x2 > 0, the value of f(x) is clearly not zero, so the Taylor series
fails to represent the function there.

2.5 Remainders

Whenever one makes any sort of approximation, it’s always important to understand the error associated with
that approximation. In the case, we would like to be able to compute the error associated with truncating
the Taylor series expansion for f(x) around x = x0 after some finite number of terms — say, terms up to
and including xn. In other words, if we break the full Taylor series around x = x0 into two parts, like so

f(x) =

n∑

p=0

1

p!
f (p)(x0)(x− x0)

p +

∞∑

p=n+1

1

p!
f (p)(x0)(x− x0)

p (2.39)

and keep only the first sum on the right-hand side, we want to be able to compute how big the second sum
— i.e., the remainder, often denoted Rn — actually is.

There are a number of different methods for determining Rn for different types of series. One useful, and
fairly universally applicable method involves the use of a theorem6 which states that the remainder can be
written in the form

Rn =
1

(n+ 1)!
(x− x0)

n+1f (n+1)(ξ) , (2.40)

where ξ is some as-yet unknown number that lies between x0 and x. This theorem doesn’t tell us what ξ
actually is. However, it does tell us that if we can put a bound on ξ from some other consideration, we can
use this to put a bound on Rn.

4Despite its name, the “interval” of convergence for certain series may consist of a single point — ie, one particular value of
x — a set of such points, a set of multiple distinct intervals, etc..

5Determining whether −1 and +1 fall in this window is the subject of Problem 5.
6A straightforward proof of this theorem and a list of other forms in which Rn can be written can be found in §5.6 of Arfken

& Weber, Mathematical Methods for Physicists.
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Example: Estimating a Remainder

As an example, let’s consider the function f(x) = ex. If we approximate this function by performing a
Taylor-series expansion around x = 0, but keep only the first two terms ex ≈ 1 + x in Eq. (2.25), how big
can x get before the error could exceed 1% of the true result?

We can’t derive the exact value of Rn from Eq. (2.40), because it doesn’t tell us the value of ξ. However,
can use it to place a conservative bound on Rn. In particular, this equation tells us that

R1 =
1

2!
x2f (2)(ξ) =

1

2
x2eξ , (2.41)

so now we just need to figure out a way of constraining this expression. One helpful fact we can use is that
1 ≤ eξ ≤ ex for any ξ in the range 0 ≤ ξ ≤ x. Feeding this constraint into our expression for R1 tell us us
that the remainder must lie within the range

x2

2
≤ R1 ≤

1

2
x2ex . (2.42)

These upper and lower bounds on R1 are shown as functions of x in Fig. 2.2. The corresponding upper
bound on the percent error associated with this approximation for any particular value of x is just the the
upper limit on R1 divided by the exact value of ex:

[Percent error] ≤ 1

2
x2 . (2.43)

Thus, we can guarantee that the error associated with this approximation doesn’t exceed 1% as long as
x ≤
√
2× 0.01 ≈ 0.14.

Figure 2.2: A plot showing the upper and lower limits (dashed lines) in Eq. (2.42) on the remainder R1 in
the Taylor expansion ex ≈ 1 + x as a function of x. The solid curve indicates the exact value of R1.

2.6 The Harmonic Approximation

Taylor series provide an important perspective on why harmonic motion is such a ubiquitous phenomenon
in nature. The fact that the equation of motion for our pendulum in Sect. 2.1 looked an awful lot like the
simple-harmonic-oscillator equation for small x was not special or unusual. In fact, if you take almost any
physical system that has a stable equilibrium point xeq and expand the restoring force F (x) in a Taylor
series around this equilibrium solution, you’ll find that the equation of motion looks just like the equation
for a simple harmonic oscillator for small ∆x = x− xeq.
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In order to illustrate this, it’s helpful to revisit in a bit more mathematical detail what we mean when
we say that a system has a stable equilibrium point. We recall from Ch. 1 of these lecture notes that an
equilibrium point — be it stable or unstable — is a point a which the net force vanishes — i.e., where

F (xeq) = 0 . (2.44)

As we also discussed briefly in Ch. 1, a stable equilibrium point is one for which the restoring force acts to
push the system back towards equilibrium if it strays to either side. In other words, F (x) must be negative for
x > xeq and positive for x < xeq. One way of testing whether a force meets this condition is to examine the
derivative F (x) with respect to x at the equilibrium point. If the derivative is positive, then the equilibrium
point is clearly unstable, meaning that small deviations from xeq result in the the system being pushed even
further away from equilibrium. On the other hand, if the derivative is negative, the system is stable, meaning
that small deviations by from xeq result in the system being driven back toward xeq.

For a conservative force, we can also express these conditions on F (x) as conditions on the potential-
energy function U(x). In particular, We saw in Ch. 1 that

F = − dU

dx
, (2.45)

so the stability criterion for dF/dx corresponds to a criterion for d2U/dx2 — i.e., a condition on the concavity
of the potential-energy function. Specifically, we have

dF

dx

∣∣∣∣
x=xeq

< 0 or
d2U

dx

∣∣∣∣
x=xeq

> 0 −→ stable equilibrium point

dF

dx

∣∣∣∣
x=xeq

> 0 or
d2U

dx

∣∣∣∣
x=xeq

< 0 −→ unstable equilibrium point

dF

dx

∣∣∣∣
x=xeq

= 0 or
d2U

dx

∣∣∣∣
x=xeq

= 0 −→ test inconclusive

(2.46)

If d2U/dx2 > 0 and the equilibrium solution at x = xeq passes this basic stability test, it’s not hard
to show that the system will function like a simple harmonic oscillator if the deviation from equilibrium is
sufficiently small. It’s easy to demonstrate this by expanding F (x) as a Taylor series around the equilibrium
point xeq:

F (x) = a1(x− xeq) + a2(x− xeq)
2 + a3(x− xeq)

3 + . . . (2.47)

I have omitted a0 here because Eq. (2.44) tells me that F (xeq) = 0 at any equilibrium point, so it must be
true that a0 = 0. The derivative dF/dx at precisely x = xeq is just the coefficient a1

dF

dx

∣∣∣∣
x=xeq

=
[
a1x+ 2a2(x− xeq)

2 + 3a3(x− xeq)
2 + . . .

]
|x=xeq

= a1 . (2.48)

We therefore see that the basic stability test in Eq. (2.46) boils down to a statement about the sign of the
Taylor-series coefficient a1. If a1 < 0, the stability test tells you that the equilibrium at the point xeq is
stable. If a1 > 0, it tells you that the equilibrium is unstable. If a1 = 0, the test is inconclusive and we need
more information to determine the stability of the system for x near xeq.

In the case in which the equilibrium point does pass the basic stability test, we can write our Taylor-series
expression for F (x) in a slightly more revealing form by defining a positive constant k ≡ −a1 > 0:

F (x) = − k(x− xeq) + a2(x− xeq)
2 + a3(x − xeq)

3 + . . . (2.49)

When x is very close to xeq, the terms involving higher powers of the displacement ∆x = (x−xeq) will be very
small compared to the linear term, and the restoring force is very well approximated by F (x) ≈ −k(x−xeq).
In other words the system functions like a simple harmonic oscillator to a very good approximation when
the displacement ∆x is sufficiently small. This is true of any equilibrium point in any physical system
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which passes this stability test. This is why nature is full of physical systems which exhibit simple harmonic
motion: although the number of systems which function exactly like a simple harmonic oscillator is small,
the number of systems which function approximately like a simple harmonic oscillator is huge!

We can also view the harmonic approximation s a Taylor-series expansion of the potential-energy function
U(x). The change in the potential energy when we displace the system from its equilibrium position xeq to
some other nearby position x is is just minus the integral of the restoring force from xeq to x. Since we’re
assuming that x is very close to xeq, we can use the harmonic approximation for the restoring force, which
gives us

U(x) = −
∫ x

xeq

F (x′)dx′ ≈
∫ x

xeq

k(x′ − xeq)dx
′ ≈ 1

2
k(x− xeq)

2 + C , (2.50)

where C is an integration constant which represents the value of the potential-energy function at x = xeq.
Explicitly setting C = U(xeq), we have:

U(x) = U(xeq) +
1

2
k(x− xeq)

2 (2.51)

which is in fact the Taylor series for U(x) up to and including terms quadratic in x. Indeed, the Taylor-series
coefficient a2 is just U (2)(xeq)/2! = k/2, and the coefficient a1 vanishes because, by definition, U (1)(xeq) = 0
at an equilibrium point. We can therefore view the harmonic approximation as an approximation of the
potential-energy function by a parabola in the vicinity of xeq, as illustrated in Fig. 2.3. Note that this
approximation is reasonably good for x near xeq, but likely to fail miserably for large displacements.

Figure 2.3: An illustration of the harmonic approximation of an arbitrary potential U(x) for values of x near
a stable equilibrium point at xeq.

There do exist physical systems which have stable equilibrium points for which the stability test in
Eq. (2.46 is inconclusive. The equation of motion for such a system does not reduce to the simple-harmonic-
oscillator form ẍ ≈ −k(x − xeq) for small ∆x. Nevertheless, the approximate equation of motion that does
emerge for small ∆x can still exhibit periodic solutions x(t). One example of this would be a system with a
restoring force F (x) = − kx3. The point x = 0 is clearly an equilibrium point, since F (0) = 0. However,
because

dF

dx

∣∣∣∣
x=0

= 0 , (2.52)

the Taylor-series coefficient a1 vanishes.7 Another example of a situation in which the the basic stability test
would be inconclusive is one in which the derivative of F (x) is discontinuous at x = xeq. In this case, the
Taylor series for F (x) isn’t even well defined at this point because the function isn’t infinitely differentiable.

7When f(x) is a polynomial, they Taylor series for f(x) is just f(x) itself.
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2.7 Applications of the Harmonic Approximation

One place where the harmonic approximation is frequently used in physics and chemistry is in calculating the
interaction between pairs of atoms in molecules or crystals. To see how this works in practice, let’s consider
a pair of atoms with masses m1 and m2 which are exerting forces on each other, as shown in Fig. 2.4. Let’s
assume that Newton’s Third Law holds, so that the force F12 exerted on atom 1 by atom 2 is equal and
opposite to the force F21 exerted on atom 2 by atom 1. Furthermore, let’s assume that the forces the atoms
exert on each other depends only on the distance r ≡ x2 − x1 between them, where x1 and x2 are the
respective coordinates of atoms 1 and 2.

m1 m2
F12 F21

Figure 2.4: A pair of atoms with masses m1 and m2 exerting forces on each other.

Newton’s Second Law gives us a pair of differential equations for x1 and x2:

m1
d2x1

dt2
= F12 , m2

d2x2

dt2
= F21 = − F12 (2.53)

If we divide each of these equations of motion by the respective mass of the atom and then subtract them,
we get

d2x2

dt2
− d2x1

dt2
=

(
1

m2
+

1

m1

)
F21 =

m1 +m2

m1m2
F21 . (2.54)

You may recall from General Physics that the collection of masses appearing on the right-hand side of this
equation is the inverse of what’s called the reduced mass

µ ≡ m1m2

m1 +m2
. (2.55)

of the system. Since one of our basic assumptions was that F21 depends only on r, we’ll drop the subscripts
and just call it F (r). Writing the force this way makes it clear that Eq. (2.54) is just an differential equation
of motion for the relative coordinate r:

µ
d2r

dt2
= F (r) . (2.56)

This equation has exactly the same form that one would obtain from Newton’s Second Law for a particle
with mass µ.

Example: Diatomic Molecule

As an example of how the harmonic approximation is applied, let’s consider the interaction between the
atoms in a diatomic molecule. This interaction is frequently modeled using the Morse Potential, which is
given by

U(r) = D
[
1− e−β(r−a)

]2
, (2.57)

where r, once again, represents the separation between the two atoms, and where D, β, and a are positive
constants. For example, for an N2 molecule, D = 9.9 eV, a = 1.1 Å, and β = 2.85 Å−1.

Our first task is to find the equilibrium point, which we’ll call xeq. We know that the derivative of the
potential with respect to r must vanish at this point, so we have

dU

dr

∣∣∣∣
r=xeq

= 2D
[
1− e−β(xeq−a)

]
βe−β(xeq−a) = 0 . (2.58)
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We can see that this condition is satisfied at xeq = a because the quantity in brackets vanishes at that point.
Now we want to test whether this equilibrium point is stable by taking the second derivative of U(r) and
applying the basic stability test in Eq. (2.46). Doing do, we find that

d2U

dr2
= −2Dβ2

[
1− e−β(r−a)

]
e−β(r−a) + 2Dβ2e−2β(r−a)

= 2Dβ2
[
2e−β(r−a) − 1

]
e−β(r−a) , (2.59)

and at the equilibrium point, where r = xeq = a, this becomes

d2U

dr2

∣∣∣∣
r=xeq

= 2Dβ2 . (2.60)

This quantity is positive, so we know that xeq is a stable equilibrium point and that the restoring force
F (r) = −dU/dr reduces to the approximate, harmonic-oscillator form F (r) ≈ −k(r − xeq) when r is very
near xeq. Moreover, since

d2U

dr2

∣∣∣∣
r=xeq

= − dF

dr

∣∣∣∣
r=xeq

= k , (2.61)

the effective “spring constant” is just

k = 2Dβ2 . (2.62)

Now that we have a general formula, it’s helpful to plug in some realistic numbers in order to get a sense
of what the frequencies associated with molecular vibrations actually are. Plugging in the parameters given
above for N2, we find that k = 2573 N/m. The reduced mass for two nitrogen atoms is µ = mN/2 = 7 amu =
1.162× 10−26 kg, and so the vibrational frequency is

fN2
=

ω

2π
=

1

2π

√
k

µ
= 75 THz. (2.63)

This is very close to the result fN2
= 71 THz obtained from direct measurement.8

Problems

1. Derive each of the Taylor-series expansions in Eqs. (2.23) through (2.27) up to the same order quoted
here in x using the general formula for the coefficients in Eq. (2.20).

2. Find the first two non-zero terms in the Maclaurin series for the error function

erf(x) =
2√
π

∫ x

0

e−t2dt . (2.64)

Use these to obtain numerical estimates for erf(0.1). Check your answer using the built-in function
“Erf” in Mathematica.

3. Taylor series can be added, multiplied, or divided. Mulitply the series for cosx and sinx together,
keeping the first three non-zero terms in the product. Verify that the trigonometric relation

sin(2x) = 2 sinx cosx , (2.65)

holds to this order in the Taylor-series expansion of each side of the equation.

8While this is a nice cross-check, the reasoning is actually somewhat circular because the parameters D, β, and a for the
Morse potential are derived from spectroscopic measurements.
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4. In special relativity, the energy of a particle of mass m and velocity v is given by

E =
mc2√

1− v2/c2
. (2.66)

This includes both the rest energy of the particle and its kinetic energy. Find the first three non-zero
terms in the Maclaurin-series expansion of E around v = 0. The first two should be familiar. Note
that it may be easier to find the expansion for E(u), where u = v2/c2, and then substitute back in for
u at the end.

5. Determine whether ln(1+x) converges for the value x = 1. In order to do this, you’ll need to apply one
or more of the additional tests of convergence described in Sect. 1.5 - 1.8 of Boas, Mary L., Mathematical

Methods in the Physical Sciences , Wiley 2005.

6. The Lennard-Jones potential is an empirically-derived formula for the potential-energy function
which describes the interaction between a pair of neutral atoms separated by a distance r. It is given
by

U(r) = 4ǫ

[(σ
r

)12
−
(σ
r

)6]
, (2.67)

where the constants ǫ and σ depend on the particular atomic species in question. The second (attrac-
tive) term in this potential arises from a fluctuating electric-dipole interaction; the first term is purely
empirical. For neon (Ne), the constants are given by ǫ = 3.1 meV and σ = 2.74 Å. Find, the effective
“spring constant” k (in N/m) for the force between two Ne atoms. How does this compare to the k
value for a typical mechanical spring that you might have encountered in Introductory Physics Lab?

Figure 2.5: A wineglass with a spherical shape.

7. The bowl of a wine glass has a spherical shape with a radius of r = 4 cm, as shown in Fig. 2.5. It is
half full of wine so that the wine constitutes exactly one half of a hemisphere. Determine the “sloshing
period” for small oscillations. Assume that the surface remains flat and find the moment of inertia
and center of mass of the hemisphere of wine; the problem is then the same as a physical pendulum.
In practice, the easiest way to measure this sloshing period would be to drive the oscillation with your
hand and measure the (angular) frequency at which the wine in the glass responds most violently. As
we’ll see later on, this “resonant frequency” is approximately equal to the natural frequency ω of the
system.



Chapter 3

Complex Variables

• The physics: Complex impedances

• The math: Complex numbers, the complex plane, Euler’s formula

3.1 Complex Numbers

Chances are, you already have some experience dealing with complex numbers from solving for the roots of
certain polynomial equations. For example, consider the quadratic equation 2x2− 4x+6 = 0. The solutions
to this equation, as given by the quadratic formula, are given by the quadratic formula:

x =
4±
√
42 − 4× 2× 6

2× 2
= 1±

√
−2 . (3.1)

There is no real number whose square is −2. Let us therefore define a non-real number, which we’ll call the
imaginary number, so that1

i ≡
√
= 1 . (3.2)

Thus, it is understood that i2 = −1. We can express any quantity which involves the square root of a
negative real number by pulling out a factor of

√
−1 = i. For example, we can write the solutions for x in

Eq. 3.1 in the form
x = 1± i

√
2 . (3.3)

These two solutions are examples of complex numbers — numbers which have both a purely real piece
and a piece proportional to the imaginary number. In general, a complex number z can be written in the
form

z = x+ iy , (3.4)

where x and y are real numbers. The number x is called the real part of z, often written as x = Re[z]. The
coefficient y of the imaginary number i is called the imaginary part of z, often written as y = Im[z]. It’s
important to remember that although this coefficient is called the “imaginary part” of z, the quantity y is
a purely real number!

Adding or subtracting complex numbers is as simple as adding or subtracting their real and imaginary
parts. For example, if we have two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2, their sum is just

z1 + z2 = (x1 + x2) + i(y1 + y2) . (3.5)

Multiplying complex numbers is likewise straightforward. Indeed, it’s simply a matter of applying the
distributive property:

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2 = (x1x2 − y1y2) + i(x1y2 + y1x2) . (3.6)

1Physicists and most mathematicians use the symbol i to refer to the imaginary number. Engineers typically use the symbol
j. I will use the symbol i to refer to the imaginary number throughout these notes.

29
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The division of one complex number by another is also a straightforward extension of the way division works
for real numbers:

z1
z2

=
x1 + iy1
x2 + iy2

. (3.7)

The trick to expressing this ratio of complex numbers in the form given in Eq. (3.4) is to multiply both the
numerator and the denominator by x2 − iy2:

z1
z2

=
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
=

(
x1x2 + y1y2
x2
2 + y22

)
+ i

(
y1x2 − x1y2
x2
2 + y22

)
. (3.8)

The reason why multiplying both the numerator and denominator by x2 − iy2 was helpful in simplifying
this expression is that the product (x2 + iy2)(x2− iy2) = x2 + y2 is purely real. For this reason, the complex
number x2 − iy2 has a very special relationship to x2 + iy2. In general, for any complex number z = x+ iy,
the number2

z∗ ≡ x− iy (3.9)

is called the complex conjugate of z. The product z∗z is always a purely real number. For this reason,
the absolute value of a complex number is defined to be

|z| =
√
z∗z . (3.10)

There is one other important thing to keep in mind about working with complex quantities. There are
some operations you can perform on complex numbers for which it doesn’t matter whether you take the real
parts of those numbers before you perform the operation or whether you perform the operation first and
then take the real part of what you get. These include:

• Taking the derivative of a complex-valued function z(t) = x(t) + iy(t) with respect to t:

Re

[
d

dt
z(t)

]
= Re

[
d

dt
x(t) + i

d

dt
y(t)

]
=

d

dt
x(t) =

d

dt
Re
[
z(t)

]
. (3.11)

• Adding (or subtracting) a pair of complex numbers z1 = x1 + iy1 and z2 = x2 + iy2:

Re
[
z1 + z2

]
= Re

[
x1 + iy1 + x2 + iy2

]
= x1 + x2 = Re[z1] + Re[z2] . (3.12)

However, there are also operations for which the result you get from taking the real parts first and then
perform the operations are not the same as the result you get by performing the operation first and then
taking the real part of what you get. These include:

• The multiplication of two complex numbers z1 and z2. If we multiply first and then take the real part
of the product, we get

Re
[
z1z2

]
= Re

[
(x1 + iy1)(x2 + iy2)

]
= Re

[
x1x2 − y1y2 + i(x1y2 + y1x2)

]
= x1x2 − y1y2 . (3.13)

By contrast, if we take the real parts and then multiply them, we get a different result:

Re[z1]Re[z2] = x1x2 . (3.14)

• The division of one complex number z1 by another z2. If we divide and then take the real part, we get

Re

[
z1
z2

]
= Re

[
x1 + iy1
x2 + iy2

]
, (3.15)

which we can simplify by multiplying both the numerator and the denominator by the complex conju-
gate z∗2 of z2:

Re

[
z1
z2

]
= Re

[
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

]
= Re

[
x1x2 + y1y2 + i(y1x2 − y2x1)

x2
2 + y22

]
=

x1x2 + y1y2
x2
2 + y22

.

(3.16)

2The complex conjugate of a complex variable z is typically denoted either z∗ or z̄.
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By contrast, if we take the real parts of z1 and z2 and then divide, we get a different result:

Re[z1]

Re[z2]
=

x1

x2
. (3.17)

It’s important to keep this in mind when working with complex quantities. If you’re not careful in your
calculations about when it’s appropriate to take the real (or imaginary) part of an expression, you’re likely
to run into problems.

3.2 The Complex Plane

x

y

θ

z = 8 + 6i

r

Figure 3.1: The complex number z = 8+6i plotted as a point on the complex plane. The x and y coordinates
are just Re[z] and Im[z], respectively. The geometric interpretations of the magnitude r and the complex
phase θ are also shown.

The magnitude of z, usually denoted r, of a complex number is just the distance from the origin to the
corresponding point on the complex plane. In other words, it’s the length of the corresponding “vector” in
the complex plane. The complex phase of z is the angle that “vector” makes with the real axis. Since
r, x, and y form a right triangle, the relationship between the rectilinear coordinate x and y and the polar
coordinates r and θ is

x = r cos θ , y = r sin θ . (3.18)

By solving this system of equations for r and θ, we obtain the inverse relations

r =
√
x2 + y2 , θ = arctan

(y
x

)
. (3.19)

Note that r = |z|, meaning that the modulus of a complex number z is simply its absolute value, and can
be found using Eq. (3.10)

The relations in Eq. (3.18) tell us that any complex number can be written in the form

z = r(cos θ + i sin θ) . (3.20)

We can actually use some of what we’ve learned about Taylor series to write z in an even more compact and
useful form. We begin by recalling that the Maclaurin series for sinx and cosx are

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . (3.21)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . , (3.22)
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while the Maclaurin series for ex is

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . . . (3.23)

Now let’s examine what this Maclaurin series looks like when the argument is imaginary:

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . .

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ . . . (3.24)

If we look back at Eqs. (3.21) - (3.22), we see that this is just the sum of the Maclaurin series for cos θ and
i times the Maclaurin series for sin θ:

eiθ = cos θ + i sin θ . (3.25)

This relationship between the exponential function and the trigonometric functions sine and cosine is known
as Euler’s Formula, which is one of the most important identities in all of mathematics. For example, in
conjunction with Eq. (3.20), Euler’s formula tells us that any complex number can be written in the form

z = reiθ , (3.26)

which is often referred to as the polar form for parametrizing complex numbers. For reasons that a glance
at Fig. 3.1 makes clear, the form z = x+ iy is often referred to as the rectangular form.

3.3 Complex Variables and the Simple Harmonic Oscillator

Consider the equation of motion for a simple harmonic oscillator:

d2x

dt2
= − ω2x . (3.27)

We’ve already seen that the general solution to this equation takes the form x(t) = A cos(ωt+ φ). However,
we now note that the function

x(t) = Aei(ωt+φ) (3.28)

also satisfies Eq. (3.27). Indeed, you can verify for yourself that this is the case. So why haven’t we discussed
this solution before? The reason is that this x(t) is a complex quantity, whereas a physical quantity like the
position of a mass on a spring is always a real. Thus, while this complex solution satisfied the equation of
motion, it made no sense physically.

However, we have already seen that it’s sometimes useful to think about physical systems in ways that
involve additional, unphysical coordinates. In particular, we have seen that there is a very close correspon-
dence between harmonic motion and circular motion. For example, we can think of the position of a mass
on a spring undergoing simple harmonic motion as being equivalent to the projection in the x direction of
the position of a point on the circumference of an imaginary circle that rotates clockwise with an angular
frequency equal to the oscillator frequency ω. This circle is a pure fiction, but it’s a useful construct for
describing the motion of the oscillating mass — provided that we recognize that the y coordinate on the
imaginary circle has no direct physical meaning. In the same way, it’s sometimes useful to artificially promote
real, physical quantities to complex quantities. There are certain equations which, when written in terms of
these “complexified” quantities, often turn out to be much easier to solve. Of course the physical quantities
we’re interested in are the real ones rather than the complexified ones, so we must remember to go back and
take the real part of the resulting expression at the end of the day.

For the case of simple harmonic motion, the analogy between this complexification procedure and the
circular-motion construction runs even deeper. Indeed, if we promote the physical position coordinate
x(t) = A cos(ωt+ φ) to the complex quantity z(t) = Aei(ωt+φ), Euler’s formula tells us that

Re[z(t)] = A cos(ωt+ φ) , Im[z(t)] = A sin(ωtφ) . (3.29)
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We recognize that the imaginary part of z(t) is the equation for the y coordinate of an object undergoing
circular motion as a function of time. In other words, when we promote x(t) to a complex coordinate z(t),
we are once again exploiting the circular-motion analogy, with the circular motion occurring in the complex
plane.

3.4 Where Making Things Complex Makes Them Simple: AC

Circuits

One situation in which complex quantities are very useful is in analyzing alternating-current (AC) circuits.
To see how this works, consider the simple LRC circuit shown in Fig. 3.2 containing a potential source that
supplies voltage VPS, a resistor with resistance R, a capacitor with capacitance C, and an inductor with
inductance L. The voltage VPS = V0 cos(ωt) supplied by the potential source oscillates sinusoidally with an
amplitude V0 and angular frequency ω.

C

L

I

+Q−Q

RVPS

Figure 3.2: Diagram of an LRC circuit with a power source supplying a potential VPS(t) = V0 cos(ωt).

If we apply Kirchhoff’s Second Law (the “loop rule”) to this circuit, we have

V0 cos(ωt)− L
dI

dt
− IR− Q

C
= 0 , (3.30)

where Q is the chage on the positive capacitor plate. In this simple circuit, I = dQ/dt, so this relation can
be interpreted as a differential equation for Q:

V0 cos(ωt)− L
d2Q

dt2
−R

dQ

dt
− Q

C
= 0 . (3.31)

This differential equation is far more complicated than the familiar simple-harmonic-oscillator equation. We
won’t attempt to derive a general solution to this equation yet (although we will do so later in this course).
For the moment, we will merely demonstrate that there exists one particular solution to this equation of the
form

Q(t) =
I0
ω

sin(ωt+ φ) , (3.32)

where I0 is a constant. We have labeled this constant I0 because it represents the amplitude of the current
— i.e., the first derivative of Q:

dQ

dt
= I = I0 cos(ωt+ φ) . (3.33)

The second derivative of Q is
d2Q

dt2
= − I0ω sin(ωt+ φ) . (3.34)

Plugging these expressions into Eq. (3.31), we find that

V0 cos(ωt) + LI0ω sin(ωt+ φ)−RI0 cos(ωt+ φ)− I0
ωC

sin(ωt+ φ) = 0 . (3.35)
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The next step in showing that our proposed solution for Q(t) in Eq. (3.32) indeed satisfies Eq. (3.31) would
be to find values for I0 and φ which make the relation in Eq. (3.35) true for all times t. This does not seem
like particularly easy task, given that this relation includes both sine and cosine terms.

It turns out to be much easier to tackle this problem when we express things in terms of complex
quantities. Euler’s formula in Eq. (3.25) tells us that

Re
[
eiθ
]

= cos θ (3.36)

Re
[
− ieiθ

]
= Re

[
− i cos θ + sin θ

]
= sin θ . (3.37)

for any real variable θ. We can therefore promote Eq. (3.35) to a complex equation by writing by substituting
the corresponding exponential expressions in for sin(ωt+ φ) and cos(ωt+ φ):

V0e
iωt − iLI0ωe

i(ωt+φ) −RI0e
i(ωt+φ) + i

I0
ωC

ei(ωt+φ) = 0 . (3.38)

We know from Sect. 3.1 that the real part of a sum of complex numbers is the same as the sum of the real
parts. Therefore, when we take the real part of this equation, we’ll get the same result as we would have
obtained if we had tried to solve Eq. (3.35) for for I0 and φ by brute force.

The first thing we notice about Eq. (3.38) is that the time dependence drops out, so we can write

V0 − iLωI0e
iφ −RI0e

iφ +
iI0
ωC

eiφ = 0 . (3.39)

We also notice that I0 and φ only appear in the particular combination

Ĩ0 ≡ I0e
iφ . (3.40)

Note that I0 and φ are real numbers (they’re the amplitude and phase of the physical current, respectively),
so we can interpret them as the modulus and complex phase of the complex parameter Ĩ0. Moreover, when
we write Eq. (3.39) in terms of Ĩ0, it becomes even simpler:

V0 − iLωĨ0 −RĨ0 +
i

ωC
Ĩ0 = 0 . (3.41)

Solving for Ĩ0 in this equation is now straightforward. We find that

Ĩ0 =
V0

R+ iLω − i
ωC

. (3.42)

We can put this complex expression in the standard Ĩ0 = Re[Ĩ0]+iIm[Ĩ0] form by multiplying both numerator
and denominator by the complex conjugate of the denominator:

Ĩ0 =
V0R

R2 +
(
Lω − 1

ωC

)2 − i
V0

(
Lω − 1

ωC

)

R2 +
(
Lω − 1

ωC

)2 . (3.43)

Finally, since I0 and φ are just the modulus and the phase of Ĩ0, we can use the relations in Eq. (3.19) to
obtain

I0 =

√
Re[Ĩ0]2 + Im[Ĩ0]2 =

√√√√√
V 2
0 R

2 + V 2
0

(
Lω − 1

ωC

)2
[
R2 +

(
Lω − 1

ωC

)2]2 =
V0√

R2 +
(
Lω − 1

ωC

)2

φ = arctan

(
Im[Ĩ0]

Re[Ĩ0]

)
= arctan

(
−Lω

R
+

1

ωRC

)
. (3.44)

Let’s step back a moment and reflect on what we have just done. We have shown that there indeed do
exist values of the constants I0 and φ for which our purported solution for Q(t) in Eq. (3.32) satisfies the
equation of motion for our LRC circuit. Thus, we have verified that indeed

Q(t) =
V0√

ω2R2 +
(
Lω2 − 1

C

)2 sin

(
ωt+ arctan

[
−Lω

R
+

1

ωRC

])
(3.45)
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is a solution to this Eq. (3.31), and the corresponding current in the circuit is

I(t) =
V0√

R2 +
(
Lω − 1

ωC

)2 cos

(
ωt+ arctan

[
−Lω

R
+

1

ωRC

])
, (3.46)

3.5 Complex Impedances

This strategy for studying the dynamics of charges and currents in AC circuits by using complex quantities
is an example of a more general technique called the method of complex impedances. This technique is
applicable to a wide variety of circuits, including circuits which don’t contain capacitors. For this reason,
it is more convenient to express things in terms of the current I(t) (which is relevant in any circuit) rather
than in terms of the charge Q(t) stored on the capacitor plates (which is clearly only relevant for circuits
with capacitors).

First, we define the complex current in the following way:

Ĩ ≡ Ĩ0e
iωt = I0e

i(ωt+φ) . (3.47)

The reason we define Ĩ in this way is so that the real current I is just the real part of this expression:

I = Re[Ĩ] = I0 cos(ωt+ φ) . (3.48)

Next, we define the complex impedances3 for the resistors, capacitors, and inductors in the circuit in the
following manner:

Resistor: ZR = R

Capacitor: ZC =
−i
ωC

Inductor: ZI = iωL . (3.49)

Finally, we apply a generalized version of Kirchhoff’s loop rule to the circuits in which the potential drop
across a given circuit element E, where E = {R,C, I}, is given by

VE = ĨZE . (3.50)

Why does this work? The answer is that the product of Ĩ0 with each of the complex impedances listed in
Eq. (3.49) is really just the “complexified” version of the corresponding voltage drop IR for a resistors, Q/C
for capacitors, and LdI/dt for inductors. The additional factors of i and ω appearing in these expressions
are proportionality constants that relate the complex impedance Ĩ(t) to its time derivatives and integrals.
Indeed, if the physical current I(t) in a circuit as a function of time is described by Eq. (3.48), then we have

dI

dt
= −I0ω sin(ωt+ φ) = Re

[
iωĨ
]

= Re

[
dĨ

dt

]

∫ t

0

Idt′ = Q(t) =
I0
ω

sin(ωt+ φ) = Re

[
− i

ω
Ĩ

]
= Re

[∫ t

0

Ĩdt′
]

. (3.51)

In other words, if we can assume that the real current I(t) is described by Eq. (3.48), then both the derivative
and the integral of the complex current Ĩ(t) turn out to be proportional to Ĩ(t) itself! Thus, while the real
expression for the voltage drop associated with an inductor involves the derivative of I and the corresponding
expression for a capacitor involves Q (the integral of I), the factors of i and ω in Eq. (3.49) take into account
the effect of these operations.

3In general, the impedance of a circuit element is just the relationship between the current and the voltage across that circuit
element.
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Z
eff=

Z2

Z1

Z1 Z2 Z
eff=

Figure 3.3: The effective complex impedance of a pair of complex impedances connected in series (left panel)
and in parallel (right panel).

Since the expression in Eq. (3.50) for the complex impedance of any of these circuit elements has the
same mathematical form as Ohm’s Law, the rules for combining complex impedances are analogous to the
rules for combining resistances. For example, the effective complex impedance for two complex impedances
connected in series is

Zeff = Z1 + Z2 , (3.52)

whereas the corresponding result for complex impedances connected in parallel is

1

Zeff
=

1

Z1
+

1

Z2
. (3.53)

Problems

C

L

R

VPS

Figure 3.4: A circuit containing an inductor, a resistor, a capacitor, and an AC power source.

1. Find the effective complex impedance for the entire circuit shown in Fig. 3.4? If the voltage supplied
by the power source is VPS = V0 cos(ωt), what is the (real) current through the resistor?



Chapter 4

Introduction to Differential Equations

• The physics: Projectile motion with damping

• The math: Differential equations, separation of variables, first-order linear differential equations,
linear differential equations with constant coefficients, linear independence

4.1 Differential Equations

We’re now going to begin discussing differential equations and techniques for solving them in more generality.
We’ll begin with some terminology that’s useful for characterizing different kinds of differential equations.

• A differential equation is said to be ordinary if it has only one independent variable. For example,
the familiar equation of motion for a simple harmonic oscillator

d2x

dt2
= − ω2x , (4.1)

where ω is a constant, is an ordinary differential equation because t is the only independent variable on
which the dependent variable x(t) depends as it involves in time. Note that although x(t) also depends
on ω, this quantity is a parameter rather than an independent variable because it is constant in time.
By contrast, an equation which contains more than one independent variable is called partial. An
example of a partial differential equation is

∂2f

∂2x
+

∂2f

∂y2
+

∂f2

∂z2
= 0 . (4.2)

This equation is called Poisson’s equation and it appears frequently in many branches of physics,
including fluid dynamics and electromagnetic theory. In this equation, the dependent variable f(x, y, z)
is a function of three independent variables: x, y, and z. In this class, we will focus primarily on ordinary
differential equations.

• A differential equation is linear if if the only terms that appear in the equation are either independent
or proportional to the dependent variable or one of its derivatives. If the equation contains powers or
functions of the dependent variable or its derivatives, it is said to be nonlinear. For example, the
equation

d3x

dt3
+ a

dx

dt
+ bx+ c = 0 , (4.3)

is a linear differential equation because each term is either independent of x(t) or proportional to one
of its derivatives. The simple-harmonic-oscillator equation in Eq. (4.1) is also linear. However, the
equations

x
d2x

dt2
+ a

dx

dt
= e−x2/b2 (4.4)

37
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and
dx

dt
= − ax2 (4.5)

are both nonlinear: the first contains both x multiplied by its second derivative with respect to t and
en exponential function involving x in its argument, while the second contains the square of x.

• The order of a differential equation is the order of the highest derivative in the equation. For example,
the differential equation

d3x

dt3
+ x2 dx

dt
+ a cos2(bt) = 0 , (4.6)

is third order, while the equation

(1 + x2)
dx

dt
+ x3(a− x) = b2x (4.7)

is first order.

• A linear differential equation is homogeneous1 if it contains no terms which do not involve the
dependent variable. For example, the linear differential equation

d2x

dt2
+ ax2 = 0 (4.8)

is homogeneous because all of the terms involve x or its derivatives. By contrast, the related equation

d2x

dt2
+ ax2 + bt2 = 0 (4.9)

is inhomogeneous because the term bt2 does not involve the dependent variable x(t).

A solution to a differential equation is a functional form for x(t) for which the two sides of the equation
are always equal, regardless of the value of the dependent variable or variables. For example, we have already
seen that

x(t) = A cos(ωt+ φ) (4.10)

is a solution to Eq. (4.1) regardless of the values of A and φ. We have also seen that

Q(t) =
I0
ω

cos(ωt+ φ) (4.11)

is a solution to the differential equation

V0 cos(ωt)− L
d2Q

dt2
−R

dQ

dt
− Q

C
= 0 (4.12)

that one obtains from Kirchhoff’s loop rule for an LRC circuit with an AC voltage source.
There is a useful theorem that exists regarding the solutions to linear differential equations. In particular,

it can be proven that for any linear differential equation of order n, a solution can be constructed which
contains n arbitrary parameters and from which any solution to the differential equation can be obtained
by assigning particular values to those n parameters. Such a solution is called the general solution to
the differential equation. For example, the solution x(t) in Eq. (4.10) represents the general solution to
the simple-harmonic-oscillator equation. This solution contains two arbitrary parameters A and φ, which is
expected because the simple-harmonic-oscillator equation is second-order. This theorem is a powerful one,
but one should keep in mind that it pertains specifically to linear differential equations — for nonlinear
differential equations, it may not apply.

1While the definition presented here is typically what is meant when one uses the word “homogeneous” in relation to a
differential equation, you should know that there is also a special class of first-order linear equations called “homogeneous
differential equations.” In this class, however, you may assume that the word is being used according to the definition presented
here unless explicitly stated otherwise.
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By contrast, the solution given in Eq. (4.11) is not the general solution to the LRC-circuit equation
in Eq. (4.12). Although this equation is second order and although our solution for Q(t) involves two
parameters, we’ve already seen that these two parameters are not arbitrary. Indeed, we’ve already shown
that their values are completely determined by the values of the physical parameters L, R, C, V0, and ω using
the method of complex impedances. Thus, we say that the solution for Q(t) in Eq. (4.11) is a particular

solution to Eq. (4.12). It certainly solves the differential equation, but there may be other solutions with
different functional forms as well.

Solving differential equations is a much an art as it is a science. There is no universally applicable method
for solving differential equations. However, there are a lot of tricks and techniques for solving particular kinds
of differential equations. Let’s now turn to examine some of these techniques and how they can be applied
to solving problems in physics.

4.2 Separation of Variables

First-order differential equations are among the easiest differential equations to solve. We’ll therefore begin by
discussing some of the techniques for solving these equations, beginning with a particular class of differential
equations called separable equations. A separable differential equation is one of the form

dy

dx
= f(x)g(y) , (4.13)

where x is the independent variable, y(x) is the dependent variable, and f(x) and g(y) are arbitrary functions
of x and y, respectively. Separable differential equations may be either linear or nonlinear and may be either
homogeneous or inhomogeneous. The trick to solving a separable differential equation is to rearrange the
equation so that the dependent variable y appears only on one side, while the independent variable x appears
only on the other:

dy

g(y)
= f(x)dx . (4.14)

One can then integrate both sides of the equation:
∫

dy

g(y)
=

∫
f(x)dx . (4.15)

The result is an equation which is no longer a differential equation, but rather just a regular equation without
any derivatives. We can then simply solve this equation for y(x) using the methods we would normally use
to solve any ordinary, non-differential equation. This technique for solving first-order, separable differential
equations is called separation of variables.

Example: Projectile Motion

To how separation of variables can be used to solve linear first-order differential equations, let’s begin by
considering a familiar example from mechanics: projectile motion. In particular, consider the motion of a
ball that’s tossed up into the air at time t = 0. The force of gravity acting on the ball is constant: F = −mg.
Newton’s Second Law tells us that the height of the ball y evolves in time according to by the equation

m
d2y

dt2
= −mg . (4.16)

This differential equation for y is second order, so we can’t use separation of variables to solve it. However,
the equation for the velocity vy = dy/dt of the ball in the y direction is a first-order equation:

m
dvy
dt

= −mg . (4.17)

Moreover, this equations is indeed of the separable form given in Eq. (4.13), with f(x)g(y) being a constant
in this case, so we can use separation of variables to solve it. We first write the equation in the form

dvy = − gdt , (4.18)
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and then integrate both sides ∫
dvy = − g

∫
dt , (4.19)

to obtain
vy(t) = − gt+ C1 , (4.20)

where C1 is a constant of integration. This is our solution for vy(t). The constant C1 is as yet undetermined,
but we can understand what it means physically by noting that at t = 0 the velocity of the ball is vy(0) = C1.
The constant C1 therefore represents the initial velocity of the ball at t = 0.

Of course one can also take this calculation a step further. In particular, since vy = dy/dt, we can
substitute this solution back into the differential equation which relates vy and y in order to obtain a
differential equation for the height of the ball:

dy

dt
= vy(t) = − gt+ v0 . (4.21)

This differential equation is also separable. Indeed, in the language of Eq. (4.13), we have f(t) = −gt+ C1

and g(y) = 1. Thus, we can once again apply separation of variables to solve for y(t). Rearranging the
equation to get y on one side and t on the other gives

dy = vy(t) =
(
− gt+ v0

)
dt . (4.22)

Integrating both sides, we obtain
∫

dy = y(t) =

∫ (
− gt+ v0

)
dt = − 1

2
gt2 + v0t+ C2 , (4.23)

where C2 is yet another integration constant. Once again, we can assess the physical significance of C2 by
observing that at t = 0, the height of the ball is y(0) = C2. Thus, C2 represents the initial position y0 of the
ball at t = 0. In other words, we have used separation of variables (twice) to show that

y(t) = − 1

2
gt2 + v0t+ y0 . (4.24)

This is the familiar ballistics equation — the equation which describes the trajectory of a projectile moving
under the influence of gravity.

Example: Falling Motion with Quadratic Damping

We can actually use the method of separation of variables to extend our study of projectile motion to slightly
more complicated but more realistic situations. For example, we can examine the effect of adding a drag
force on the trajectory of the ball. In particular, let’s consider adding a drag force which is proportional to
the square of the velocity. Physically, a drag force always acts in the direction opposite the velocity, so the
corresponding term in Newton’s law would have to flip sign whenever vy switched from negative to positive
or vice versa. Let’s avoid these issues for the moment by focusing on the portion of the ball’s trajectory
when its velocity is negative — i.e., when it’s falling. In this case, we can write Fdrag = bv2y. Thus, the
differential equation for the vertical velocity vy of the ball becomes

m
dvy
dt

= −mg + bv2y . (4.25)

This equation is also separable. Indeed, in the language of Eq. (4.13), we have f(t) = 1 and g(vy) =
−mg + bv2y, so rearranging gives us

mdvy
mg − bv2y

= − dt. (4.26)

Integrating both sides gives us

m

∫
dvy

mg − bv2y
= −

∫
dt. (4.27)
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To perform the integral on the left-hand side of this equation, we begin by first rewriting the equation
in a slightly more tractable form by multiplying both sides of the equation by mg to obtain

∫
dvy

1− (vy/vT )2
= − g

∫
dt , (4.28)

where, for convenience, we have defined the constant parameter

vT ≡
√

mg

b
. (4.29)

As we shall see, this parameter represents the terminal velocity which vy approaches as the ball falls. In
addition, since we will want to choose our constants of integration such that the initial velocity of the ball
is specified by a parameter v0, we’ll write the integral on each side of the equation as a definite integral:

∫ vy

v0

dv′y
1− (v′y/vT )

2
= − g

∫ t

0

dt′ . (4.30)

This way, vy(0) = v0, and v0 has the meaning that we want.

Figure 4.1: This plot shows how the vertical velocity vy of a falling object with quadratic damping evolves
with time. The curves shown each represent a different initial condition – i.e., a different value of the initial
velocity v0, which corresponds to the value of the curve at gt/vT = 0. Note that because the object is
assumed to be falling (i.e., the position y is assumed to be decreasing with time), we have vy(t) < 0. Note
alse that at t→∞, vy(t)→ vT all of the curves shown.

We are now ready to perform the integral on the left-hand side of Eq. (4.30). We can do this by making
the hyperbolic substitution

v′y = vT tanhη , dv′y = vT sech
2η dη . (4.31)

This yields

∫ arctanh(vy/vT )

arctanh(v0/vT )

vT sech
2η

1− tanh2η
=

∫ arctanh(vy/vT )

arctanh(v0/vT )

dη = vT arctanh

(
vy
vT

)
− vT arctanh

(
v0
vT

)
, (4.32)

so we have

vT arctanh

(
vy
vT

)
− vT arctanh

(
v0
vT

)
= − gt . (4.33)



42 CHAPTER 4. INTRODUCTION TO DIFFERENTIAL EQUATIONS

Finally, we solve this equation to obtain our solution for the velocity vy(t) of the falling ball:

vy(t) = vT tanh

[
arctanh

(
v0
vT

)
− gt

vT

]
. (4.34)

We can use the identity

tanh(α+ β) =
tanhα+ tanhβ

1 + tanhα tanhβ
(4.35)

and the fact that tanh(−α) = − tanhα to rewrite this solution in the more revealing form

vy(t) = vT
v0 − vT tanh(gt/vT )

vT − v0 tanh(gt/vT )
. (4.36)

In Fig. 4.36, the way in which the velocity vy(t) evolves with time is shown for a variety of different
values of the initial velocity v0. Indeed, each different curve in the figure corresponds to a different value for
v0. Note that because the object is assumed to be falling (i.e., the position y is assumed to be decreasing
with time), we have vy(t) < 0. Note also that at t → ∞, vy(t) → vT all of the curves shown. This is what
we mean when we say that vT is a “terminal velocity”: at very late times, vy(t) tends toward vT regardless
of the initial conditions.

Example: Radioactive Decay

In general, the rate at which a radioactive isotope decays is proportional to the number of atoms N of the
isotope remaining in the sample. In other words, N is governed by a differential equation of the form

dN

dt
= − λN , (4.37)

where λ is a proportionality constant with units [λ] = 1/s. This constant is called decay constant for the
isotope. This equation is separable and may be rearranged to give

dN

N
= − λdt . (4.38)

The next step is to integrate both sides of this equation. However, as with the last example (projectile motion
with quadratic damping), it is useful to stop and consider what our boundary conditions are so that we can
write the constants of integration in a physically meaningful way right from the start, before we integrate.
In this case, our boundary condition is that at t = 0, we begin with a certain number of radioactive atoms
N(0) = N0 in our sample. Thus, we incorporate our boundary condition by integrating the left-hand side of
this equation from N0 to N and the right-hand side over from 0 to t:

∫ N

N0

dN ′

N ′ = −
∫ t

0

λdt′ . (4.39)

This gives us the regular, non-differential equation

ln(N)− ln(N0) = ln

(
N

N0

)
= − λt , (4.40)

which we can then solve for N(t). Doing so, we find that

N(t) = N0e
−λt . (4.41)

This is the expected result: the number of radioactive atoms N(t) in the sample decays exponentially with
t.

The constant λ sets the time scale for the decay. Indeed, we see the see that inverse quantity 1λ plays a
role in this solution which is very similar to the role that the time constant τ = RC plays in setting the time
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scale to which an RC circuit charges or discharges. In fact, the half-life t1/2 of the isotope — i.e., the value
of t for which N(t) = N0/2 — is proportional to 1/λ. To see this, we simply set N(t) = N0/2 in Eq. (4.41):

N

N0
=

1

2
= e−λt1/2 , (4.42)

which yields

λ = − 1

t1/2
ln

(
1

2

)
=

ln(2)

t1/2
. (4.43)

4.3 First-Order Linear Differential Equations

While separation of variables is a useful technique when we can apply it, not all first-order differential
equations are separable. However, there are a number of other useful techniques for solving different types
of first-order differential equations. For example, there is a completely general method for solving linear

first-order differential equations.
A first-order linear differential equation can always be written in the form

dy

dx
+ P (x)y = Q(x) , (4.44)

where P (x) and Q(x) are arbitrary functions of the independent variable x. Note that according to our
definition from Sect. 4.1, an equation of this form is homogeneous if Q(x) = 0 and inhomogeneous otherwise.
As we shall see, this distinction will turns out to be quite important in

Let’s begin with the homogeneous case where Q(x) = 0 and Eq. (4.44) reduces to

dy

dx
+ P (x)y = 0. (4.45)

We actually already know how to solve this equation. Regardless of what form the function P (x) takes,
we observe that the equation is separable. Indeed, it has precisely the form indicated in Eq. (4.13), with
f(x) = −P (x) and g(y) = y. Thus, applying separation of variables on this equation and integrating, we get

∫
dy

y
= −

∫
P (x)dx . (4.46)

When we perform the integral on each side of this equation, we pick up an overall integration constant,
which we’ll call C:

ln y = −
∫

P (x)dx + C . (4.47)

The solution to Eq. (4.45) for any function P (x) is therefore

y(x) = e−
∫
P (x)dx+C . (4.48)

This is in fact the general solution for y(x).
It’s important to emphasize that at this stage, the value of the integration constant C is undetermined.

You can verify for yourself (using the fundamental theorem of calculus) that the solution for y(x) in Eq. (4.48)
satisfies Eq. (4.45) regardless of the value of C. Indeed, just like the amplitude A and the phase φ that
appear in general solution to the simple-harmonic-oscillator equation, its value cannot be specified without
additional information — information that comes in the form of the boundary conditions which characterize
the particular problem you happen to be dealing with. The solution in Eq. (4.48) is in fact the general
solution to Eq. (4.45). As appropriate for a first-order differential equation, this general solution contains
one undetermined constant. However, there are frequently many ways of writing the undetermined constants
in a differential equation. Some of these turn out to be more useful or revealing than others. For example,
in this case we shall soon see that it is useful to write Eq. (4.48) in the form

y(x) = Ae−
∫
P (x)dx , (4.49)
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where A = eC plays the role of our undetermined constant.
We are now ready to generalize this technique for solving homogeneous first-order linear differential equa-

tions to solve inhomogeneous differential equations as well. In order to do so, we begin by introducing a new
piece of terminology. For any inhomogeneous linear differential equation, let us define the complementary

equation to be the homogeneous differential equation that you would obtain by removing all of the terms
that do not involve the dependent variable or its derivatives. For example, the complementary equation to
any inhomogeneous differential equation of the form appearing in Eq. (4.44) would be the corresponding
equation of the form appearing in Eq. (4.45) — i.e., the equation without the Q(x) term.

Why is the complementary equation relevant for solving the full, inhomogeneous differential equation?
The answer is that there’s a trick we can use in order to construct a solution y(x) to the full equation by
exploiting the properties of the solution yc(x) to the complementary equation. Since the complementary
equation is a homogeneous first-order linear differential, equation, we already know that yc(x) has the form
given in Eq. (4.48):

yc(x) = Ae−I(x) , (4.50)

where for convenience we have used the shorthand

I(x) =

∫
P (x)dx (4.51)

for the integral over the function P (x). Multiplying both sides of this equation by eI(x) yields

yc(x)e
I(x) = A . (4.52)

Now let’s examine what happens when we take the derivative of both sides of this equation. Since A is a
constant, we have

d

dx

[
yc(x)e

I(x)
]

= eI(x)
d

dx
yc(x) + yc(x)e

I(x) d

dx
I(x) = 0. (4.53)

Moreover, the fundamental theorem of calculus tells us that

d

dx
I(x) =

d

dx

∫
P (x)dx = P (x) , (4.54)

so we learn from Eq. (4.53) that
d

dx
yc(x) + P (x)yc(x) = 0 . (4.55)

It turns out that we can use the result in Eq. (4.55) to generate a solution to the full, inhomogeneous
differential equation. The trick is to look for solutions for y(x) of the form

y(x) = u(x)yc(x) (4.56)

where u(x) is some unknown function of x.2 Why would we want to write y(x) this way? Well, if we plug
this candidate solution into Eq. (4.44), we obtain

Q(x) =
d

dx
y(x) + P (x)y(x)

= yc(x)
d

dx
u(x) + u(x)

d

dx
yc(x) + P (x)u(x)yc(x)

= yc(x)
d

dx
u(x) + u(x)

[
d

dx
yc(x) + P (x)yc(x)

]
. (4.57)

However, Eq. (4.55) tells us that the quantity in brackets mush vanish. Thus, we find that

yc(x)
d

dx
u(x) = Q(x) , (4.58)

2It should be emphasized that we’re not pulling a solution to Eq. (4.44) out of thin air here. We haven’t said anything about
the functional form of u(x), so this is merely a rewriting of y(x), not a guess or ansatz as to what the solution might look like
look like.
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which is a differential equation for u(x). This equation is separable and can we can solve it in the standard
manner. The solution is:

u(x) =

∫
Q(x)

yc(x)
dx+ C =

∫
1

A
Q(x)eI(x)dx+ C, (4.59)

where once again C is an integration constant. Plugging this result for u(x) back into Eq. (4.56), we arrive
at the final form of our solution to Eq. (4.44):

y(x) = u(x)yc(x) = Ae−I(x)

∫
1

A
Q(x)eI(x)dx+ CAe−I(x)

= e−I(x)

∫
Q(x)eI(x)dx +Be−I(x) , (4.60)

where we have written our undetermined constant in the form B ≡ CA. This represents the general solution
for any inhomogeneous first-order linear differential equation, and it involves a single undetermined constant,
as we would expect.

Example: RC Circuit

As an example of how this general technique for solving first-order linear differential equations can be applied,
consider the RC circuit pictured in Fig 4.2. This circuit includes a switch and an AC power source which
supplies a voltage VPS = V0 cos(ωt). At some time t = t0, the switch is closed and current begins to flow
within the circuit. We are principally interested in how the charge Q(t) on the capacitor evolves in time.
We recall that the differential equation we get for Q(t) from Kirchhoff’s loop rule is

V0 cos(ωt)−
Q

C
−R

dQ

dt
= 0 , (4.61)

where we have used the fact that the current through the resistor is given by I = dQ/dt. While we have
analyzed circuits of this form using other methods (for example, the method of complex impedances) these
methods furnished us with one particular solution to the above equation. We will now attempt to derive the
general solution to this equation.

C

RVPS

Figure 4.2: An RC circuit with an AC power source and a switch in the open position.

The first step in deriving a general solution for Q(t) is to recognize that the equation in Eq. (4.61) is an
inhomogeneous first-order linear differential equation for Q(t). Indeed, if we rewrite it in the form

dQ

dt
+

Q

RC
=

V0

R
cos(ωt) , (4.62)

we can readily equate the functions P (x) and Q(x) in Eq. (4.44) with 1/RC and (V0/R) cos(ωt), respectively.
We therefore know that the general solution is of the form given in Eq. (4.60).
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The next step in deriving this general solution out is to evaluate I(t), by which we mean the integral
that corresponds to Eq. (4.51). Since the quantity 1/RC which plays the role of P (x) is a constant in this
case, this is easily done:

I(t) =

∫
dt

RC
=

t

RC
. (4.63)

Plugging this into the general solution, we have

Q(t) = e−t/RC

∫
V0

R
cos(ωt)et/RCdx+Be−t/RC . (4.64)

We can evaluate this integral by using Euler’s formula to express the cosine function in terms of exponentials:

∫
cos(ωt)et/RCdx =

1

2

∫ (
et/RC+iωt + et/RC−iωt

)
dx

=
1

2

[
1

(RC)−1 + iω
et/RC+iωt +

1

(RC)−1 − iω
et/RC−iωt

]

=
1

2
et/RC

[
RC − iω(RC)2

1 + (ωRC)2
eiωt +

RC + iω(RC)2

1 + (ωRC)2
e−iωt

]

=
RC

1 + (ωRC)2
et/RC

[
cos(ωt) + ωRC sin(ωt)

]
. (4.65)

Substituting this result into Eq. (4.64) gives us

Q(t) =
V0C

1 + (ωRC)2

[
cos(ωt) + ωRC sin(ωt)

]
+ Be−t/RC . (4.66)

This is our general solution for Q(t), so in principle we have what we’ve been looking for. However, it’s
also nice to rearrange this expression slightly so the the physical interpretation of this solution is a bit more
clear. In order to do this, we begin by defining the quantity φ ≡ arctan(ωRC) and using it to rewrite the
quantity in square brackets in Eq. (4.66) as follows:

cos(ωt) + ωRC sin(ωt) = cos(ωt) + tanφ sin(ωt)

=
1

cosφ

[
cosφ cos(ωt) + sinφ sin(ωt)

]

=
cos(ωt− φ)

cosφ
. (4.67)

We can then use the trigonometric identity

cos(arctanx) =
1√

1 + x2
(4.68)

to write this expression in the form

cos(ωt) + ωRC sin(ωt) =
√
1 + (ωRC)2 cos

[
ωt− arctan(ωRC)

]
. (4.69)

This may not seem like much of an improvement, but when we substitute this result beck into Eq. (4.64),
the resulting expression has some pieces that we recognize from earlier in the course:

Q(t) =
V0C√

1 + (ωRC)2
cos
[
ωt− arctan(ωRC)

]
+Be−t/RC . (4.70)

Indeed, the first term on the left-hand side is exactly the form of the solution for Q(t) that we obtained for
the same RC circuit using the method of complex impedances! What’s new is the second piece, which has
the form of a decaying exponential. We also see that the quantity φ that we defined above is related to the
phase shift of the current in the circuit.
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In order to understand the physical meaning behind this solution for Q(t) at a deeper level, it’s useful
to examine how his solution behaves in certain limiting cases. First, let’s consider what happens at very
late times, when t ≫ RC. In the regime, the term with the decaying exponential rapidly dies away and
the first term — the familiar one from our study of complex impedances — is the only term that matters.
Because Q(t) always reduces to this solution when t becomes sufficiently large, it’s typically referred to as the
steady-state solution for the system. It’s also worth noting that this steady-state solution is independent
of the initial conditions which characterize the system, which enter into the general solution for Q(t) through
the undetermined constant B. By contrast, the decaying-exponential term in Eq, (4.66) is an example of
a transient solution — a term which depends sensitively on the initial conditions and only contributes
significantly at early times.

In addition, let’s also consider what happens to our solution for Q(t) for very low frequencies ω ≪ RC.
Physically, this means that the potential supplied by the power source is very nearly constant on short
timescales — i.e., for t much smaller than the period T . In this limit, we recover another familiar result. In
particular, we see that Eq. (4.66) reduces to

Q(t)
ω→0−→ V0C cos(0) +Be−t/RC = V0C +Be−t/RC . (4.71)

To see the connection between this expression and a more familiar result we’ve already seen in lab, let’s
specify a value for B by explicitly applying some initial conditions. In particular, if the capacitor is initially
uncharged — i.e., if we specify Q(0) = 0 as our boundary condition — we find that

B = − V0C , (4.72)

and thus we have

Q(t) ≈ V0C
(
1− e−t/RC

)
. (4.73)

We recognize this as the formula for the charge on a charging capacitor in a DC circuit. This is indeed what
we might have expected: for extremely low frequencies the voltage supplied by the power source is effectively
constant, so it functions like a DC circuit for t≪ T .

Figure 4.3: The charge Q(t) on the capacitor (normalized to the value of V0C) in the RC circuit pictured in
Fig. 4.2 as a function of ωt for several different choices of the initial charge Q0. The steady-state solution
(the black dashed curve) is also shown. For all of the curves shown, we have taken ωRC = 1. We observe
that all of the solutions indeed settle into the steady-state behavior at sufficiently late times.

Finally, let’s examine how we can apply the general solution in Eq. (4.70) to find particular solutions to
specific problems with specific boundary conditions. This amounts to choosing the appropriate value of B
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which corresponds to whatever those boundary conditions happen to be. For example, we might start with
a particular initial charge Q0 on the capacitor at t = 0. Setting Q(0) = Q0 in Eq. (4.70) yields

Q0 =
V0C√

1 + (ωRC)2
cos
[
arctan(ωRC)

]
+B . (4.74)

We can then solve this equation for B to determine how this undetermined constant is related to Q0. When
we do so — and use the trigonometric identity in Eq. (4.68) to write the result in a simpler, more compact
form — we find that

B = Q0 −
V0C

1 + (ωRC)2
. (4.75)

Substituting this expression for B back into Eq. (4.70) gives us the corresponding expression for Q(t):

Q(t) =
V0C√

1 + (ωRC)2
cos
[
ωt− arctan(ωRC)

]
+

[
Q0 −

V0C

1 + (ωRC)2

]
e−t/RC . (4.76)

We emphasize that this is just another way of writing the general solution for Q(t). Indeed, we still have one
undetermined constant — we’ve just traded B for Q0. However, the nice thing about writing the general
solution in this form is that Q0 has a more direct physical interpretation than B does.

In Fig. 4.3, we plot the ratio of Q(t) to the parameter combination V0C at a function of ωt for a variety
of different choices of the initial charge Q0 on the capacitor. For each curve shown, we have taken ωRC = 1.
Also shown is a black dashed curve which corresponds to the steady-state solution. At early times, the
transient term — which depends sensitively on the choice of boundary conditions — is important, and the
curves for different Q0 look very different. By contrast, at late times, the curves all settle into the steady-state
solution, regardless on Q0, as we’d anticipated.

4.4 General Solutions from Solutions to the Complementary Equa-

tion

The method we used to obtain the solution in Eq. (4.60) is applicable to any first-order linear differential
equation. We emphasize again that this solution represents the general solution to an equation of this sort:
any function which solves such a first-order linear differential equation can be written in this form, and
different choices of initial conditions simply correspond to different assignments of the constant B.

It is worth mentioning another technique which can be used for obtaining the general solution to an
inhomogeneous linear differential equation. While this technique is not as universally applicable as the
method for solving first-order linear differential equations outlined in Sect. 4.3, it has the advantage of being
applicable not only just to first-order equations, but to inhomogeneous linear differential equations of any
order. In particular, it can be shown3 that every solution to a linear differential equation of arbitrary order
may be written in the form

y(x) = yc(x) + yp(x) , (4.77)

where yc(x) is the general solution to the complementary equation and yp(x) is any particular solution to
the full equation. Of course, since we already have an explicit method for calculating the general solution
to any first-order linear differential equation, this method is far more useful for dealing with higher-order
differential equations. It’s important to emphasize, however, that this method is applicable only for solving
linear differential equations. For or nonlinear equations, Eq. (4.77) does not necessarily hold true.

Example: Mass Suspended from a Spring

As an example of wow Eq. (4.77) can be used, let’s apply it to the familiar problem of a mass m suspended
vertically from a spring with spring constant k. Both gravity and the spring force act on the mass, so the

3For a proof of the corresponding theorem, see, e.g., Section 3.6 of Boyce, William E. and DiPrima, Richard C., Elementary

Differential Equations, Wiley 1992.
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equation of motion we get from from Newton’s Second Law for the extension y of the spring is

m
d2y

dt2
= − ky −mg . (4.78)

This is a second-order linear differential equation, and it’s inhomogeneous because the gravitational term
doesn’t involve the dependent variable y. The complementary equation, which we obtain by dropping this
inhomogeneous term, is just the simple-harmonic-oscillator equation:

m
d2yc
dt2

= − kyc . (4.79)

We already know that the general solution to this equation is

yc(t) = A cos(ωt+ φ) , ω =

√
k

m
. (4.80)

Therefore, all that we need to do in order to obtain a solution to the full equation in Eq. (4.78) to find a
particular solution — any particular solution — that satisfies that equation.

Since any particular solution will do, we’ll work with the simplest possible solution we can find. (This
is typically a good strategy whenever you’re applying this technique.) One trivial solution that satisfies
Eq. (4.78) is the solution for which the right-hand side vanishes and we just have dy/dt = 0 for all time.
Physically, this corresponds to the mass just hanging there undisturbed at the equilibrium point and not
oscillating at all. Our particular solution is therefore

yp(t) = − mg

k
. (4.81)

Like any particular solution to a differential equation, this solution involves a particular choice of boundary
conditions. In particular it corresponds to an initial position y(0) = yeq = −mg/k and an initial velocity
vy(0) = 0. It’s admittedly a thoroughly uninteresting solution in a lot of ways, but it’s sufficient to allow us
to construct a general solution to the full inhomogeneous differential equation in Eq. (4.78):

y(t) = yc(t) + yp(t) = A cos(ωt+ φ) − mg

k
. (4.82)

This was exactly the expression we obtained in Chapter 1 of these Lecture Notes using other methods.

Problems

1. For each of the following ordinary differential equations, identify the order of the equation and state
whether it is linear or nonlinear. If it is linear, identify whether it homogeneous or inhomogeneous.
Note that in each equation, a, b, and c are assumed to be constant parameters.

(a)
d2x

dt2
− ax cos(bt) = c

(b) y2
dy

dx
= − 2cy(y − b)

(c) e−t/a dy

dt
− 4b

dy2

dt2
= cy

(d)
d3y

dx3
= 2cy

(e)
d2f

dx2
= af + bf2 + cf3
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(f)

[
1− a

dx

dt

]2
= bx− ct2

2. Use the identities in Sect. 2.12 of Boas, Mary L., Mathematical Methods in the Physical Sciences , Wiley
2005 to derive the identity for tanh(α + β) in Eq. (4.35) under the assumption that α and β are real
numbers.

3. Consider a spherical droplet which is evaporating at a rate proportional to its surface area.

dV

dt
= − kA , (4.83)

where V is the volume of the droplet, A is it’s surface area, and k is a constant with units [k] = m/s.

(a) Solve for V (t) for a droplet which begins at t = 0 with an initial volume V (0) = V0.

(b) If half of the droplet has disappeared after 1 day, how many additional days must you wait before
the entire droplet will have disappeared?

4. In one of the examples in Sect. 4.2, we examined the motion of a falling object acted upon by a
quadratic drag force. Let us now examine the motion of an object acted upon by a linear drag force
Fdrag = cvy , where c is a constant with units [c] = kg/s. Such a form for the drag force is appropriate
for slow, small objects, like the oil droplets in Millikan’s classic experiment for measuring the charge
of the electron. Find the solution for the velocity vy(t) in the y direction for such an object, assuming
that it is released from rest — i.e., that vy(0) = 0 — and that the only forces acting on the object are
gravity and the linear drag force described above.

5. Consider the RL circuit shown in Fig. 4.4. The switch is closed at time t = 0. Write down a differential
equation for the current I(x) using Kirchhoff’s loop rule Solve this equation for I(t), and plot the voltage
drop across the resistor as a function of time.

L

RVPS

Figure 4.4: An RL circuit with an AC power source and a switch in the open position.

6. Find the general solution to the differential equation

x
dy

dx
+ 2y = sinx . (4.84)

Find the value of the constant in your solution for the boundary condition y(π/2) = 0.



Chapter 5

Second-Order Differential Equations

and Damped Oscillations

• The physics: Decaying oscillations, quality factors, frictional damping, underdamped and over-
damped oscillators

• The math: Second-order homogeneous linear differential equations, linear independence, reduction of
order, piecewise solutions to differential equations

5.1 Second-Order Homogeneous Linear Differential Equations

Now that we have explored a number of useful techniques for solving first-order differential equations, let us
now turn to discuss second-order differential equations. Such equations crop up almost everywhere in physics,
in part due to the fact that Newton’s Second Law inherently involves acceleration — the second derivative
of position with respect to time. As one might expect, dealing with second-order differential equations —
even linear ones — can be a much more involved process than dealing with first-order equations, and the
range of phenomena they display can be far richer, In this section, we will develop a number of methods
for solving particular types of linear second-order differential equations. Nonlinear second-order differential
equations are often far more complicated.

The general form for a second-order linear differential equation is

P (x)
dy2

dx2
+Q(x)

dy

dx
+R(x)y = G(x) , (5.1)

where P (x), Q(x), R(x), and G(x) are functions of the independent variable x. We will begin by restricting
our attention to homogeneous equations — i.e., equations for which G(x) = 0. In other words, we will focus
on equations of form

P (x)
dy2

dx2
+Q(x)

dy

dx
+R(x)y = 0 . (5.2)

First, before we begin discussing some of the techniques that apply to specific kinds of homogeneous
second-order linear differential equations, it is worth calling attention to a generic property which the general
solution to such equations share. In particular, there exists a theorem 1 which states that the the general
solution to such a differential equation can always be written in the form

y(x) = C1y1(x) + C2y2(x) , (5.3)

where C1 and C2 are constants and y1(x) and y2(x) are a pair of linearly-independent solutions to the
equation. Formally speaking, two functions y1(x) and y2(x) are linearly independent if the only solution to
the equation

ay1(x) + by2(x) = 0 for all x (5.4)

1For a proof of this see, e.g., Sect. 3.2 of Boyce, William E. and DiPrima, Richard C., Elementary Differential Equations,
Wiley 1992.
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for constant parameters a and b is a = b = 0. Practically speaking, this basically means that the functions
y1(x) and y2(x) are not simply multiples of each other or merely different ways or writing the same function.
One can verify that two functions y1(x) and y2(x) are linearly independent by calculating a quantity called
the Wronksian, given by

W (x) = y1(x)
d

dx
y2(x)− y2(x)

d

dx
y1(x) . (5.5)

If the Wronskian for is not identically zero for all x, then these functions are linearly independent.
The fact that the general solution to any homogeneous second-order linear differential equation can be

written in the form given in Eq. (5.3) is actually quite powerful. Essentially, it means that all you need to do
in order to obtain the general solution to such an equation is find any two distinct (i.e., linearly-independent)
functions y1(x) and y2(x) that satisfy the equation. The general solution y(x) is simply a linear combination
of these functions with arbitrary coefficients. We are now going to show that once you know one solution
y1(x), you can always find the second solution y2(x) using techniques that we learned for solving first-order
differential equations.

In passing, however, it’s worth remarking that we have already seen one example in which the general
solution to a homogeneous second-order linear differential equation can be expressed in the form given
in Eq. (5.3). The simple-harmonic-oscillator equation is a homogeneous second-order linear differential
equation, and we have shown that the general solution can be written as

x(t) = C1 cos(ωt) + C2 sin(ωt) . (5.6)

Indeed, as you will demonstrate in Problem 1, cos(ωt) and sin(ωt) are linearly independent.

5.2 Reduction of Order

At the end of the previous section we alluded to a method which would allow you to use one solution y1(x)
to a second-order differential equation to derive the other, linearly-independent solution. The method is
called reduction of order, and it can always be used to find a second solution y2(x) to a homogeneous
second-order differential equation if you know the first. The trick is to write y2(x) in the form

y2(x) = u(x)y1(x) , (5.7)

where u(x) is some arbitrary function of x. Since we haven’t specified anything about the form of u(x), this
is just a rewriting of y2(x).

When we plug this expression for y2(x) into Eq. (5.2), we find that

0 = P (x)
d2

dx2
(uy1) +Q(x)

d

dx
(uy1) +R(x)(uy1)

= P (x)

[
y1

d2u

dx2
+ 2

du

dx

dy1
dx

+ u
d2y1
dx2

]
+Q(x)

[
y1

du

dx
+ u

dy1
dx

]
+R(x)uy1

= u

[
P (x)

d2y1
dx2

+Q(x)
dy1
dx

+R(x)y1

]
+ P (x)y1

d2u

dx2
+

[
2P (x)

dy1
dx

+Q(x)y1

]
du

dx
. (5.8)

The first term on the right-hand side of this equation must be equal to zero because we already know that
y1(x) is a solution to Eq. (5.2), from which is follows that

P (x)
d2y1
dx2

+Q(x)
dy1
dx

+R(x)y1 = 0 . (5.9)

We therefore have

P (x)y1
d2u

dx2
+

[
2P (x)

dy1
dx

+Q(x)y1

]
du

dx
= 0 . (5.10)

Since we’re assuming that we already know the functional form of y1(x) (and therefore its derivatives with
respect to x as well), all that remains is for us to solve this differential equation for u(x) and we’ll have our
solution for y2(x).
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This equation in Eq. (5.10) is yet another second-order homogeneous differential equation. However, it
does not contain any terms proportional to u(x) — only terms proportional to it derivatives. This means
that we define

v(x) ≡ d

dx
u(x) , (5.11)

we can cast Eq. (5.10) as a first-order differential equation for v(x):

P (x)y1
dv

dx
+

[
2P (x)

dy1
dx

+Q(x)y1

]
v = 0 . (5.12)

This equation is separable, so we can solve it for v(x) using separation of variables. We can then plug the
result into Eq. (5.11) and solve for u(x). Finally, we can substitute this result into Eq. (5.7) to obtain the
second solution y2(x) to our original differential equation.

5.3 Finding Roots: Equations with Constant Coefficients

One class of homogeneous second-order linear differential equations which can be solved a straightforward
method is the class of equations for which the functions P (x), Q(x), and R(x) appearing in Eq. (5.2) are
constants — i.e., equations of the form

a
d2y

dx2
+ b

dy

dx
+ cy = 0 , (5.13)

where a, b, and c are constant parameters. Equations of this form arise quite commonly in physics. One
canonical example, which we shall study in more detail below, is the case of a harmonic oscillator subject a
velocity-dependent damping force.

Our first step in solving Eq. (5.13) will simply be to use our intuition about functions and their derivatives
to guide us as to what functional form the solution might be likely to take. For example, we know that the
derivative of the exponential function ex is just the function itself. Therefore, for any constant parameter r,
the chain rule tells us that

d

dx
erx = rerx , (5.14)

and taking further derivatives of this expression will just result in our original function being multiplied by
additional factors of r. This means that if we substitute a function of the form y(x) = erx into Eq. (5.13),
we get

ar2erx + brerx + cerx =
(
ar2 + br + c

)
erx = 0 . (5.15)

This equation will be satisfied identically for all x if the quantity in parentheses vanishes — i.e., when r is
a solution the quadratic equation

ar2 + br + c = 0 . (5.16)

This quadratic equation is known as the characteristic equation for the differential equation in Eq. (5.13).
In other words, we have shown that the solutions to Eq. (5.13) are just exponential functions of the form

y±(x) = er±x , (5.17)

where r± are the two solutions to Eq. (5.16) given by the quadratic formula

r± =
−b±

√
b2 − 4ac

2a
(5.18)

As long as b2 6= 4ac, these two solutions will be linearly independent.2 Therefore, according to Eq. (5.3), we
can construct the general solution to Eq. (5.13) by adding them together with arbitrary coefficients:

y(x) = C1e
r+x + C2e

r−x . (5.19)

2The special case in which b = 4ac is considered in Problem 4.
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5.4 The Damped Harmonic Oscillator

One of the most important applications of the results we derived in the previous section arises in the context
of physical systems with dissipative forces — i.e., forces which cause physical systems to lose energy to their
surroundings. Nature is full of dissipative forces. Air resistance and friction are two familiar examples. Joule
heating (the dissipation of energy as heat by resistors) plays a analogous role in electric circuits to the role
these forces play in mechanics. Our first-hand experience tells us that a real mass suspended from from a
spring does not continue to oscillate forever. Rather, the amplitude of its oscillations decreases over time
until the mass effectively comes to a standstill.

One example of a dissipative force is the drag force which acts to slow the motion of an object moving
through a fluid such as air or water. In general, the drag force on a moving body is a complicated non-linear
function of the velocity v. However, just as we saw that the restoring force in many physical systems is
approximately proportional to the displacement ∆x = x − x0 from equilibrium when that displacement is
sufficiently small (the Harmonic approximation), it likewise turns out that for small velocities, the drag force
on an object moving through a fluid can likewise be approximated as linear in the velocity v:

Fdrag ≈ − bv . (5.20)

This is just the first term in a Maclaurin-series expansion for Fdrag. For more rapidly moving objects, the
drag force will contain terms involving higher powers of v, and such terms often actually dominate over the
linear term shown in Eq. (5.20). For example, the drag force on a soccer ball moving through the air is
dominated by the quadratic term Fdrag = −cv2.

Let us now consider the case of a mass on a spring which is subject to a linear damping force of the form
given in Eq. (5.20). Since v = dx/dt, the equation of motion for the mass is

m
d2x

dt2
= − kx− b

dx

dt
. (5.21)

By defining the parameter combinations ω0 ≡
√
k/m and β ≡ b/2m, we can recast this expression in the

form
d2x

dt2
+ 2β

dx

dt
+ ω2

0x = 0 . (5.22)

Note that angular frequency ω0 correspond to the familiar angular frequency of oscillation ω for the simple
harmonic oscillator. Since β and ω are constants, this equation has precisely the form given in Eq. (5.13),
with3 a = 1, b = 2β, and c = ω2

0 . Thus, we know that the solutions are

x(t) = C1e
r+t + C2e

r−t , (5.23)

where the roots r± of the characteristic equation are

r± = − β ±
√
β2 − ω2

0 . (5.24)

In principle, that’s it. We’re done. The solution in Eq. (5.23) represents the most general solution to the
equation of motion for a linearly-damped harmonic oscillator. Applying this result to any particular physical
system is simply a matter of specify our boundary conditions and using those boundary conditions to solve
for the undetermined constants C1 and C2. However, as simple as the solution in Eq. (5.23) may seem at first
glance, it can give rise to an astonishing variety of possible behaviors, depending on the relationship between
the parameters ω and β. It is therefore worth exploring the properties of the solutions to this equation in
more detail.

5.5 Underdamping, Overdamping, and Critical Damping

It turns out that there are three different kinds of behavior which can arise from our general solution for x(t)
in Eq. (5.23). Which kind of behavior occurs in a particular physical system depends on the relationship
between the parameters β and ω0. We now examine each of these three cases in turn.

3Make sure not to confuse the quantity b appearing in Eq. (5.13) with the drag coefficient in Eq (5.20).
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5.5.1 Underdamped Motion

The first of these three cases we’ll examine is the one which bears the most resemblance to the simple
harmonic oscillator. This is the case in which ω0 > β. In this case, the expressions in Eq. (5.24) for the roots
r± of the characteristic equation are complex. In order to see what this means physically, let’s separate out
the real and imaginary parts of these roots and write them in rectangular form:

r± = − β ± iω1 , (5.25)

where we have defined the real parameter

ω1 ≡ =
√
ω2
0 − β2 . (5.26)

This case is commonly referred to as the underdamped case. We shall soon see that ω1 represents the
oscillation frequency of the solution.

When we plug the expressions for r± in Eq. (5.25) back into the general solution for x(t) in Eq. (5.23),
we get

x(t) = e−βt
[
C1e

iω1t + C2e
−iω1t

]

= e−βt [(C1 + C2) cos(ω1t) + i (C1 − C2) sin(ω1t)] , (5.27)

where we have used Euler’s theorem to write the complex exponentials in the first line in terms of sines
and cosines. You might be concerned that the imaginary number appears in this expression, since the
position x(t) is a real physical quantity and must therefore be a purely real-valued function. However, this
requirement just represents a constraint on the values of the undetermined constants C1 and C2. Indeed, for
our solution to make any physical sense, we must require that that C1 − C2 be purely imaginary — or, in
other words, we must have that C2 = C∗

1 . This condition also implies that C1 + C2 is be purely real. Thus,
we can rewrite Eq. (5.27) in terms of a pair of purely real constants

B1 ≡ C1 + C2 , B2 ≡ i (C1 − C2) , (5.28)

which gives us
x(t) = e−βt [B1 cos(ω1t) +B2 sin(ω1t)] . (5.29)

We can write this expression for x(t) in an even more compact form using the same trigonometric identities
we used to simplify our general solution for Q(t) in the RC-circuit example from Sect. 4.3. In particular, we
find that we can write our general solution for x(t) as

x(t) = Ae−βt cos(ω1t+ φ) , (5.30)

where the two undetermined constants A and φ are related to B1 and B2 in the following manner:

A =
√
B2

1 +B2
2 , φ = − arctan

(
B2

B1

)
. (5.31)

When we write it in this form, the physical interpretation of our general solution for an underdamped
oscillator becomes much more transparent. In particular, the solution looks quite a bit like the general
solution for the simple harmonic oscillator. However, there is very one important difference. We have
seen that the amplitude of oscillation for the general solution to the simple-harmonic-oscillator equation is
constant in time — a result that ultimately stems from the fact that energy is conserved within the system.
By contrast, the amplitude

A(t) = Ae−βt (5.32)

for the underdamped-oscillator solution in Eq. (5.30) is not constant; rather, it includes a falling exponential
that suppresses the amplitude for late times. This reflects the fact that energy is not conserved within
this system. The drag force removes mechanical energy from the system over time by transferring it to the
surroundings (e.g., as heat). As a result, the amplitude of oscillation diminishes over time. The quantity β,
which has units [t] = 1/s, represents the rate at which the amplitude function A(t) decreases. In particular,
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we see that 1/β is the time it takes for A(t) to decrease to 1/e of its original value. For this reason, β is
often referred to as the decay parameter for underdamped harmonic motion:

Γdec = β (underdamped case) . (5.33)

Since the the undetermined coefficients in the general solution for x(t) are at this point simply arbitrary
numbers, it would be good to examine how these coefficients are related to quantities that have a direct
physical interpretation — quantities of the sort that we might use in setting up boundary conditions for a
given oscillator problem. We’ll focus on the parametrization in Eq. (5.29), in which the the undetermined
coefficients are B1 and B2. One potentially relevant set of physical quantities which we could use in estab-
lishing boundary conditions are the initial position x0 and the initial velocity v0 of the oscillator at t = 0.
Indeed, we often used these same quantities that when specifying our boundary condition for the simple
harmonic oscillator.

Imposing the boundary condition x(0) = x0 on our general solution in Eq. (5.29) for the damped harmonic
oscillator is relatively straightforward. We find that

x0 = x(0) = e0 [B1 cos(0) +B2 sin(0)] = B1 . (5.34)

In other words, the value of the coefficient B1 is apparently just the initial position x0 of the oscillator.
Imposing the initial condition v(0) = v0 is simply a matter of taking the derivative of x(t) with respect to t
and setting the result equal to v0 at t = 0. The derivative is

dx

dt
= −βe−βt [B1 cos(ω1t) +B2 sin(ω1t)] + e−βt [−B1ω1 sin(ω1t) +B2ω1 cos(ω1t)]

= e−βt
[
(−B1β +B2ω1) cos(ω1t)− (B1ω1 +B2β) sin(ω1t)

]
, (5.35)

and so we have

v0 =
dx

dt

∣∣∣∣
t=0

= e0
[
(−B1β +B2ω1) cos(0)− (B1ω1 +B2β) sin(0)

]
= −B1β +B2ω1 . (5.36)

Since we already know that B1 = x0, we can solve this equation for B2 in terms of x0 and v0. Doing so, we
obtain our set of relations between the coefficients B1 and B2 and the initial values x0 and v0:

B1 = x0 , B2 =
v0 + βx0

ω1
. (5.37)

The relations in Eq. (5.37) allow us to specify x(t) as a function of time for any combination of x0 and v0.
Some example solutions of the form given in Eq. (5.29) for the case of underdamped motion are illustrated
in Fig. 5.2. Once again, the four different panels shown in the figure correspond to different choices of the
initial position x0 and velocity v0 of the oscillator. Indeed, these solutions are what we might have expected:
in each case, x(t) oscillates around its equilibrium point at xeq = 0 with an amplitude that diminishes over
time.

Because there are two timescales involved in underdamped harmonic motion — the period of oscillation
and the timescale on which the amplitude of oscillation decays away — it is often of interest to see how
these two timescales compare to one another. Information about the ratio of these timescales is typically
expressed in terms of a quantity known as the quality factor:

Q ≡ ω0

2β
. (5.38)

The reason for the factor of 2 in this expression — as well as the reason for choosing ω0 rather than the
physical frequency of oscillation ω1 — may not be at all obvious at this point. However, as we shall soon
see, these factors are included to give Q a direct interpretation in terms of how the energy of the system
decreases over time.
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Figure 5.1: Each panel in this figure shows the full solution x(t) for underdamped motion (solid black curve)
for a different combination of the initial position x0 and initial velocity v0 (in arbitrary units). The results
in each panel correspond to the parameter choices ω0 = 2 and β = 0.2 (in the same, arbitrary units). The
contributions from the two individual solutions x1(t) (blue long-dashed curve) and x2(t) (red short-dashed
curve) are also indicated in each figure. The full solution x(t) is the sum of these two individual contributions.
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5.5.2 Overdamped Motion

Let us now turn to the second kind of behavior that can be realized from the general solution to the damped-
harmonic-oscillator equation. This is the behavior that arises in the case in which ω0 < β. In this case, the
expressions in Eq. (5.24) for r± are purely real. Thus, the general solution takes the form

x(t) = C1e
−βt+

√
β2−ω2

0
t + C2e

−βt−
√

β2−ω2
0
t

= e−βt
[
C1e
√

β2−ω2
0
t + C2e

−
√

β2−ω2
0
t
]
, (5.39)

where the undetermined coefficients C1 and C2 in this case are purely real. It’s important to note that we
always have β >

√
β2 − ω2

0 in this case, so both of the terms in Eq. (5.39) are actually decaying exponentials,
and both asymptotically tend toward zero as t → ∞. This solution is called the overdamped solution
by contrast with the underdamped solution in Eq. (5.30). It is also frequently expressed in terms of the
hyperbolic sine and cosine functions

x(t) = e−βt

[
B1 cosh

(√
β2 − ω2

0t
)
+B2 sinh

(√
β2 − ω2

0t
)]

, (5.40)

where the coefficients B1 and B2 are related to the coefficients C1 and C2 as follows:

B1 = C1 + C2 , B2 = C2 − C1 . (5.41)

We can make contact between the arbitrary coefficients B1 and B2 in Eq. (5.40) and the respective initial
values x0 and v0 for the position and velocity for the case of overdamped motion in much the same way as
we did for the underdamped case. Proceeding in essentially the same way that we did in Sect. 5.5.1, we find
that

B1 = x0 , B2 =
v0 + βx0√
β2 − ω2

0

. (5.42)

Some example solutions of the form given in Eq. (5.39) for the case of overdamped motion are illustrated in
Fig. 5.2. Once again, the four different panels shown in the figure correspond to different choices of the initial
position x0 and velocity v0 of the oscillator. However, you can see that calling the system an “oscillator” at
all is a bit of a misnomer. Indeed, for β > ω0, our solution for x(t) never even manages to complete a single
oscillation — or even half an oscillation — but rather tends asymptotically toward the equilibrium point.

Although the two terms in Eq. (5.39) both decay away to zero as t → ∞, we observe that the second
term decays away more quickly than the first; thus, the late-time behavior of x(t) is dominated by the first
term. If we wanted to define a decay parameter for this overdamped solution, we would therefore focus on
the decay behavior of this first term and write

Γdec = β −
√
β2 − ω2

0 (overdamped case) . (5.43)

We note that when β ≫ ω, we can use a Taylor series to approximate the second term. Doing so, we find
that

Γdec = β − β

√

1− ω2
0

β2
= β − β

[
1 +

1

2

ω2

β2
− 1

8

ω2

β2
− 1

16

ω2

β2
+ . . .

]
≈ ω2

0

2β
,

where we have assumed that ω0 is sufficiently small compared to β that we are justified in keeping only the
leading term in the expansion. This is actually highlights an interesting difference between the underdamped
and overdamped cases. For underdamped motion, the rate at which the x(t) decays with time is governed
solely by the damping parameter β. By contrast, for overdamped motion, both β and ω0 play a critical role
in determining this rate. Moreover, for a fixed value of ω0, we see that increasing β actually makes this rate
smaller , which is the opposite of what happens in the underdamped case.



5.5. UNDERDAMPING, OVERDAMPING, AND CRITICAL DAMPING 59

Figure 5.2: Each panel in this figure shows the full solution x(t) for overdamped motion (solid black curve)
for a different combination of the initial position x0 and initial velocity v0 (in arbitrary units). The results
in each panel correspond to the parameter choices ω0 = 0.8 and β = 1 (in the same, arbitrary units). The
contributions from the two individual solutions x1(t) (blue long-dashed curve) and x2(t) (red short-dashed
curve) are also indicated in each figure. The full solution x(t) is the sum of these two individual contributions.
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5.5.3 Critically-Damped Motion

So far, we have considered the behavior of the general solution x(t) to the-damped-oscillator equation for
the case in which β < ω0 (which corresponds to underdamped motion) and the case in which β > ω0 (which
corresponds to overdamped motion). There is, however, a third case which we have not yet considered. This
is the special case in which β = ω0. In this case, the roots r± of the characteristic equation are degenerate
and both given by

r+ = r− = − β . (5.44)

We therefore know that one of the solutions is given by

x1(t) = e−βt , (5.45)

but we still need a second linearly-independent solution in order to construct the general solution for x(t).
However, as you have already demonstrated in Problem 4, the second solution has the form

x2(t) = te−βt . (5.46)

Thus, the full solution is
x(t) =

(
B1 +B2t

)
e−βt , (5.47)

where the undetermined constants B1 and B2 are once again purely real. This special case is referred to as
critically-damped motion.

Once again, we can relate the coefficients B1 and B2 in Eq. (5.47) to x0 and v0 for critically-damped
motion in the same way as we did for the underdamped and overdamped cases. Doing so, we find that

B1 = x0 , B2 = v0 + βx0 . (5.48)

Some example solutions of the form given in Eq. (5.47) for the case of critically-damped motion are illustrated
in Fig. 5.3. Once again, the four different panels shown in the figure correspond to different choices of the
initial position x0 and velocity v0 of the oscillator. These figures demonstrate that indeed, just as in the
overdamped case, the solutions for the critically-damped case do not oscillate, but rather asymptotically
approach zero as t→∞.

5.6 The Energetics of Damped Harmonic Motion

The total energy Etot of the system is once again the sum of the kinetic energy of the oscillator and the
potential energy stored in the spring:

Etot =
1

2
mv2 +

1

2
kx2 . (5.49)

Since the drag force is not a conservative force, there is no potential-energy term associated with this force.
Rather, this force serves to dissipate the energy stored in the system to its surroundings. Thus, for the
damped harmonic oscillator, Etot is a (decreasing) function of time.

Once again, let’s begin with the underdamped case, which bears the most resemblance to the simple
harmonic oscillator. Computing Etot is simply a matter of plugging our results for x(t) and v(t) for this case
into Eq. (5.49). It’s easiest to work with the parametrization for x(t) in Eq. (5.30). In this parametrization,
the velocity takes the form

v(t) = −Aβe−βt cos(ω1t+ φ)−Aω1e
−βt sin(ω1t+ φ)

= −Aω0e
−βt cos

[
ω1t+ φ− arctan

(
ω1

β

)]
. (5.50)

where we have used a few trigonometric identities from our “standard toolbox” to simplify this result (see
Problem 8). The total energy of an underdamped oscillator system is therefore

Etot =
1

2
kA2e−2βt

{
cos2(ω1t+ φ) + cos2

[
ω1t+ φ− arctan

(
ω1

β

)]}

=
1

2
kA2e−2βt

{
1 +

β

ω0
cos

[
2ω1t+ 2φ− arctan

(
ω1

β

)
}
])

, (5.51)
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Figure 5.3: Each panel in this figure shows the full solution x(t) for critically-damped motion (solid black
curve) for a different combination of the initial position x0 and initial velocity v0 (in arbitrary units). The
results in each panel correspond to the parameter choice ω0 = β1 (in the same, arbitrary units). The
contributions from the two individual solutions x1(t) (blue long-dashed curve) and x2(t) (red short-dashed
curve) are also indicated in each figure. The full solution x(t) is the sum of these two individual contributions.
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where we have once again used trigonometric identities to simplify the result (see Problem 9).
This result may seem a bit bizarre at first glance. We might have anticipated that the expression for Etot

would contain an exponential suppression factor which causes the energy of the system to decrease over time
as the system gives up energy to its surroundings. Indeed, for the simple harmonic oscillator, we found that

E
(SHO)
tot =

1

2
kA2 , (5.52)

and so it makes sense that since the amplitude A(t) for an underdamped oscillator falls off exponentially
with time, it makes sense that the energy would be suppressed by a factor of A2(t). However, the fact that
there is an additional time-dependence to the expression in Eq. (5.51) — a time-dependence which comes in
the form of a cosine term no less — is certainly less obvious a priori .

Figure 5.4: The total energy, kinetic energy, and potential energy (normalized to the initial energy E0) of
underdamped harmonic motion as a function of time, assuming that the oscillator starts from rest — i.e.,
we take v0 = 0, which means that φ = 0. These results in the left panel correspond to an oscillator with
ω = 2 and β = 0.2 (in arbitrary units), while the results in the left panel correspond to an oscillator with
ω = 1 and β = 0.4.

In order to try to understand the physical meaning of the result in Eq. (5.51), let’s begin by examining it
graphically. In Fig. 5.4, we show some examples of how the total energy Etot evolves with time for different
choices of the parameters β and ω0. The left panel shows the results for ω = 2 and β = 0.2 (in arbitrary
units); the right panel shows the results for ω = 1 and β = 0.4. In each case, to simplify things, we have
chosen the initial conditions so that the oscillator starts from rest — i.e., i.e., that v0 = 0 — which means
that φ = 0 in Eq. (5.51). We also the individual contributions from the kinetic and potential energy terms
in each case.

The first thing we notice in Fig. 5.4 is that the Etot curves have “ripples.” These ripples are the
consequence of the cosine term in Eq. (5.51). It’s important to emphasize that despite the presence of these
ripples, there is never any point in time at which Etot actually increases. If there were, that would mean that
the system was gaining additional energy from somewhere! The ripples simply mean that Etot is decreasing
more rapidly at certain times than at others. We can appreciate why this is the case when we compare
each Etot curve in Fig. 5.4 to the corresponding curves for the kinetic- and potential-energy contributions
individually. You’ll notice that he rate of energy loss is highest when the kinetic energy is large. This is
because the drag force Fdrag = −bv responsible for dissipating the energy of the system to its surroundings is
proportional to v. The rate of energy loss is therefore greater when v (and hence also the kinetic energy) is
large. When the kinetic energy is small, as it is around the turning points of the motion where x(t) ≈ A(t),
we see that Etot decreases much more slowly.

The quality factor we defined in Eq. (5.38) actually turns out to be a very useful quantity for characterizing
how the total energy in a damped oscillator diminishes over time. To see this, let’s consider the case in which
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the damping is very light, in the sense that β ≪ ω0. In this case, the cosine term in Eq. (5.51 can be neglected,
and the total energy of the system is approximately

Etot ≈
1

2
kA2e−2βt . (5.53)

We can use the relationship between Q and β Eq. (5.38) to rewrite this equation in terms of Q:

Etot ≈ E0e
−ω0t/Q , (5.54)

where E0 ≡ kA2/2 is the initial energy of the oscillator at t = 0. Since ω1 =
√
ω2
0 − β2 ≈ ω0 for β ≪ ω0, we

see that the period of oscillation for a lightly damped oscillator is approximately

T1 =
2π

ω1
≈ 2π

ω0
. (5.55)

Substituting this result into Eq. (5.54), we have

Etot ≈ E0e
−2πt/QT1 . (5.56)

This expression gives us a direct physical interpretation of the quality factor Q. Specifically, it tells us that
Q/2π is the number of periods of oscillation the oscillator experiences before the energy Etot of the oscillator
drops to a fraction 1/e of its initial value. A large value of Q means that the system will pass through a
substantial number of oscillations before its energy significantly diminishes.

Figure 5.5: The total energy, kinetic energy, and potential energy (normalized to the initial energy E0) of
overdamped harmonic motion as a function of time. Is in Fig. 5.4, we assume that the oscillator starts from
rest. These results in the left panel correspond to an oscillator with ω = 1 and β = 1.1 (in arbitrary units),
while the results in the left panel correspond to an oscillator with ω = 1 and β = 2.

The energy associated with both overdamped and critically-damped oscillator systems can be computed
in much the same way as the energy associated with underdamped systems. Indeed, one simply substitutes
the appropriate expressions for x(t) and v(t) into Eq. (5.49). In Fig. 5.5, we show the Etot, kinetic-energy,
and potential-energy curves for an overdamped oscillator (again normalized to the initial value of the energy
E0) with an initial velocity v0 = 0. We observe that in the case of overdamped motion, Etot decreases
smoothly without the “ripple” effect which arises in the underdamped cases. We also observe that the
potential-energy contribution to Etot dominates over the kinetic-energy contribution at all times. This is
because the damping is far more significant for overdamped motion than it is for underdamped motion. This
means that the velocity never becomes terribly large in this case.
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Figure 5.6: Curves showing the evolution of a damped-harmonic-oscillator system in state space. The eight
panels of this figure, from top left to bottom right, illustrate how the state-space trajectory for such a system
changes as the damping parameter β is increased. In each panel, we have taken ω0 = 1 (in arbitrary units)
and chosen x0 = 2 and v0 = 0 as our boundary conditions conditions.

Figure 5.7: Examples of state-space trajectories for a damped harmonic oscillator in the underdamped regime
(left panel), critically-damped regime (center panel), and overdamped regime (right panel). The curves in
each panel correspond to different choices of the initial position x0 with an initial velocity v0 = 0.

Figure 5.8: The full curves in state space along which the trajectories shown in Fig. 5.7 lie.
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5.7 The State-Space Picture of Damped Harmonic Motion

We can also gain some further intuition about the physics of damped-oscillator systems by looking at how
these systems evolve in state space. First, let’s consider how the state-space trajectories depend on the
fundamental parameters β and ω0 which characterize the system. In Fig. 5.6, we show how the state-space
trajectories for the damped harmonic oscillator depend on the relationship between β and ω0. The eight
panels of this figure, from top left to bottom right, illustrate how the state-space trajectory for a damped
harmonic oscillator changes as the damping parameter β is increased. In each panel, we have set ω0 = 1 (in
arbitrary units) and chosen x0 = 2 and v0 = 0 as our boundary conditions.

The panel at the top corresponds to the β = 0 limit, in which the system reduces to the simple harmonic
oscillator and the state-space trajectories are circles.4 The fact that the state-space trajectories form closed
curves in this limit is a consequence of energy conservation. As β increases from zero, the system begins
to lose energy to its surroundings and the phase space trajectories change from circles to spirals. These
spirals tend toward the origin more and more rapidly as β increases until we reach the value β = ω0 which
corresponds to the critically damped case. At this critical value of β, the state-space trajectories change
from spirals to curves which flow directly toward the origin without “overshooting.”

It’s also worth taking a look at how the state-space trajectories depend on the choice of boundary con-
ditions. In Fig. 5.7, we show a variety of state-space curves for an overdamped oscillator (left panel), a
critically-damped oscillator (center panel), and an overdamped oscillator (right panel). Each curve corre-
sponds to a different choice of the initial position x0 for an initial velocity v0 = 0. Just as we saw for the
simple harmonic oscillator, the state-space trajectories for a particular oscillator system (i.e., a particular
choice of β and ω0) never cross. However, they do converge to the origin as t → ∞ because of the energy
loss due to damping.

Each of the state-space trajectories shown in Fig. 5.7 starts at a particular point in state space which is
specified by the boundary conditions x0 and v0. However, one can also view these trajectories as truncated
“pieces” of the full state-space curves shown in Fig. 5.8. For every point (x, v) in state space, there is a unique
curve which passes through that point. An oscillator will therefore follow the curve that passes through the
point (x0, v0), always proceeding in a clockwise direction as time progresses.

5.8 Frictional Damping

m

Fspring

x

Fkf

v

Figure 5.9: A mass oscillating at the end of a spring with a frictional damping force. The diagram shows
the mass during the part of its motion when x > xeq and v > 0.

Up to this point, our discussion of dissipative forces have been focused almost exclusively on linear drag
forces. We have seen that oscillator systems damped by such a force can display a broad range of behavior.
However, we have not yet said anything about another dissipative force which plays a very important role
in real physical systems: friction. You may recall from mechanics that the force of kinetic friction on sliding
object takes the form

Fkf = − µkNsign(v) , (5.57)

4In the more general case in which ω0 6= 0, the state-space trajectories would be ellipses.
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where N is the magnitude of the normal force acting on the object, µk is the coefficient of kinetic friction,
and sign(v) simply indicates the sign of the velocity:

sign(v) =

{
+1 v > 0

−1 v < 0 .
(5.58)

Let’s consider what happens if we add such a frictional damping force to the equation of motion for a
simple harmonic oscillator, as illustrated in Fig. 5.9. Since µk and N are both constants, it might seem like
incorporating a frictional damping force this equation would be even easier than incorporating the linear
drag force we dealt with in Sect. 5.4. However, the quantity sign(v) in Eq. (5.57) actually makes dealing
with frictional damping a non-trivial matter. The reason is that when we add a frictional damping force to
the equation of motion for a simple harmonic oscillator, the resulting differential equation

m
d2x

dt2
= − kx− µkmg sign

(
dx

dt

)
(5.59)

is nonlinear because of the way in which it depends on dx/dt.
In this case, however, the non-linearity is merely a consequence of the friction term in Eq. (5.59) flipping

its sign at the turning points of the motion when the block in Fig. 5.9 reverses its direction. During the
time interval between any two of those turning points, the equation actually looks quite linear indeed. For
example, while the block is traveling to the right, its velocity v is positive. Thus, the differential equation
for x(t) is

d2x

dt2
= − k

m
x− µkg . (5.60)

We have seen equations of this form before and know what the solutions look like. Moreover, in Sect. 4.4, we
discussed the fact that the general solution to an inhomogeneous linear differential equation of arbitrary order
may be written as a sum of the general solution yc(x) to the complementary equation and any particular
solution yp(x) to the full equation. The complementary equation is just the simple-harmonic-oscillator
equation. Furthermore, we know that there exists one particular solution xp(t) to the full equation consists
of the block sitting inert at the equilibrium point xeq = −µkmg/k. Thus, the general solution to Eq. (5.60)
can be written in the form

x(t) = B cos(ωt) + C sin(ωt)− µkmg

k
. (5.61)

We can solve for x(t) at times when the velocity v of the block is negative in a similar fashion. For v < 0,
the the equation of motion is

d2x

dt2
= − k

m
x+ µg , (5.62)

and the general solution takes the form

x(t) = B cos(ωt) + C sin(ωt) +
µkmg

k
. (5.63)

We emphasize that the undetermined coefficients B and C appearing in Eq. (5.61) and the coefficients B
and C appearing in Eq. (5.63) are not necessarily equal. On the contrary, like any undetermined coefficients
which appear in the general solution to a differential equation, they are determined by the appropriate
boundary conditions.

But what are those boundary conditions and how to we deal with them? For every other differential
equation we’ve encountered thus far, we simply had to apply our boundary conditions once in order to obtain
a solution that was valid for all values of the independent variable. Here, however, the solution that we get
by plugging in our initial values for x(t) and v(t) at t = 0 is only valid until the block reaches the first turning
point at some time t1 and reverses its direction. After that, the form of the solution changes. However, since
the solution that applies for this first time interval is valid all the way up to the turning point, we can use
the values of x(t1) and v(t1) obtained from this solution as our initial conditions for x(t) and v(t) for the
subsequent time interval from t1 until the second turning point at time t2. We can then use the values of
x(t2) and v(t2) obtained from this second solution as the initial conditions for the next time interval, and so
on.
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To understand how this procedure works in practice, it’s best to begin with a concrete example. In
particular, let’s consider the case in which the block begins at time t = 0 with an initial position x0 > 0 and
an initial velocity v0 = 0. In this case, the mass will begin moving to the left, so the appropriate solution
for x(t) is the solution in Eq. (5.63). The boundary condition on x(t) gives us

x1(0) = x0 = B1 cos(0) + C1 sin(0) +
µkmg

k
= B1 + ℓ , (5.64)

where, for convenience, we have defined ℓ ≡ µkmg/k. Note that ℓ has dimensions of length. The coefficient
C1 can be determined from the boundary condition

dx

dt

∣∣∣∣
t=0

= 0 = −B1ω sin(0) + C1ω cos(0) = C1 . (5.65)

Thus, our initial solution is
x1(t) = (x0 − ℓ) cos(ωt) + ℓ . (5.66)

We’re not done yet, however. The solution in Eq. (5.66) is only valid so long as v < 0 and the block is
moving to the left. At t = π/ω = T/2, the velocity — i.e., the derivative of x1(t) — changes from negative
to positive. At this point, Eq. (5.60) becomes the equation of motion for x(t), and Eq. (5.61) becomes the
solution. Let’s call this second piece of the solution x2(t). The values of the coefficients B and C for x2(t)
can be determined by applying the appropriate boundary conditions. In this case, those conditions are that
the initial values for x2(t) and v2(t) match up with the final values for x1(t) and v1(t) at the turning point
t = T/2. Thus, we have

x2(T/2) = B2 cos(π) + C sin(π) − ℓ = −B2 − ℓ = (x0 − ℓ) cos(π) + ℓ = 2ℓ− x0

v2(T/2) = −B2ω sin(π) + C2ω cos(π) = − C2ω − (x0 − ℓ) sin(π) = 0 . (5.67)

Solving for B2 and C2 and plugging the result back into Eq. (5.60), we get

x2(t) = (x0 − 3ℓ) cos(ωt)− ℓ . (5.68)

Once again, however, this solution is only valid until t = 2π = T and the derivative of x2(t) changes
from positive to negative. After that, the solution once again takes the form in Eq. (5.63), with B and C
determined by the boundary conditions x3(T ) = x2(T ) and v3(T ) = v2(T ). The solution turns out to be

x3(t) = (x0 − 5ℓ) cos(ωt) + ℓ . (5.69)

By repeating this procedure each time the velocity switches sign, we obtain a set of individual solutions for
the position of the block, each of which is valid only within a particular range of the independent variable t:

x(t) =






(x0 − ℓ) cos(ωt) + ℓ 0 ≤ t < T/2

(x0 − 3ℓ) cos(ωt)− ℓ T/2 ≤ t < T

(x0 − 5ℓ) cos(ωt) + ℓ T ≤ t < 3T/2

(x0 − 7ℓ) cos(ωt)− ℓ 3T/2 ≤ t < 2T

. . . . . .

(5.70)

This solution for x(t) is an example of a piecewise solution to a differential equation: set of individual
solutions valid for particular ranges of the independent variable which are ultimately “sewn together” by
boundary conditions at the endpoints of each range. During the first half-period of oscillation, x(t) looks
like the solution for a simple harmonic oscillator oscillating around the point xeq = ℓ with amplitude x0 − ℓ;
during the second half-period, the x(t) looks like a simple harmonic oscillator oscillating around the point
xeq = −ℓ with amplitude x0 − 3ℓ; and so forth. This behavior is illustrated in Fig. 5.10.

The reason is that we have only dealt with kinetic friction thus far. At the points x0 − (2n+ 1)ℓ where
x(t) reaches a minimum or a maximum, the velocity is zero and static friction becomes relevant. You may
recall from your mechanics course that the force of static friction (which we’ll call Fsf) acts on an object at
rest on a surface, and acts in the direction opposite to the direction of the component of the applied force
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Figure 5.10: The position x(t) of a mass oscillation on a spring with frictional damping, as given by the
piecewise solution in Eq. (5.70). The mass oscillates with an amplitude that decreases with each half-cycle
until the spring force can no longer overcome the force of static friction at one of the turning points at which
v = 0. After this occurs, the mass just remains “stuck” at the turning point.

Fapp parallel to that surface. The magnitude of Fsf is equal to the magnitude of Fapp up to a maximum
value |Fsf | = µsN , where N is the normal force and µs is the coefficient of static friction. In other words,

Fsf =

{
−Fapp for Fapp < µsN

−µsNsign(Fapp) for Fapp ≥ µsN .
(5.71)

This static-friction force,is generically stronger than the force of kinetic friction. Consequently, the mass has
a tendency to get “stuck” at the first extremum it reaches for which the restoring force from the spring is
weaker than the force of static friction — i.e., for which

µsmg > k
[
x0 − (2n+ 1)ℓ

]
= kx0 − (2n+ 1)µkmg . (5.72)

The number of oscillations which the mass undergoes before this condition is met depends on the particular
values which these parameters happen to take. For example, in the case illustrated in Fig. (5.10), the we
have chosen our parameters such that the mass becomes stuck at t = 4T , after four complete oscillations.

Problems

C

RVPS

Figure 5.11: An RC circuit hooked up to power supply which delivers a square-wave voltage VPS which
alternates between VPS = V0 and VPS = −V0.
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1. Verify that the functions y1(x) = cosx and y2(x) = sinx are linearly independent by computing the
Wronskian and showing that it does not vanish identically.

2. Consider the differential equation

x2 d
2y

dx2
+ 2x

dy

dx
+ x2y = 0 . (5.73)

(a) Verify that the function y1(x) = sin(x)/x is a solution to this differential equation.

(b) Use reduction of order to find a second linearly-independent solution y2(x) and write down the
general solution y(x).

3. In Sect. 5.2, we saw how reduction of order could be used to derive a second, linearly-independent
solution y2(x) to a homogeneous linear differential equation, provided that you already know one
solution y1(x). This method can actually be extended to inhomogeneous equations of the form

P (x)
d2y

dx2
+Q(x)

dy

dx
+ R(x)y = G(x) (5.74)

as well. In this problem, you’ll examine how this method works in the inhomogeneous case.

(a) Let’s say you already know one solution y1c(x) to the complementary equation to Eq. (5.74) —
i.e., the corresponding differential equation with the inhomogeneous term removed:

P (x)
dy21c
dx2

+Q(x)
dy1c
dx

+R(x)y1c = 0 . (5.75)

Begin by setting y2 = u(x)y1c(x) and derive a second-order differential equation for u(x) by
following an analogous set of steps to those we followed in Sect. 5.2.

(b) Define v(x) ≡ du/dx and use the methods you know for solving first-order differential equations
to solve the resulting first-order linear differential equation for v(x) in terms of y1c(x) (and its
derivatives) and the functions P (x), Q(x), R(x), and G(x). Make sure to retain all relevant
constants of integration.

(c) Use this expression for v(x) to derive a formula for y2(x) in terms of these quantities. Again,
make sure to retain all relevant constants of integration.

4. In the case that the two roots to the characteristic equation in Eq. (5.16) are degenerate — i.e., when
r+ = r− — our solution in Eq. (5.19) does not hold because the functions y+(x) and y−(x) are not
linearly independent in this case. Use the solution y1(x) = erx, where r+ = r− = r is the degenerate
solution to the characteristic equation, and derive the second solution y2(x) using reduction of order,
as outlined in Sect. 5.2.

5. Show that the distance between adjacent maxima in x(t) for underdamped harmonic motion is given
by the period T1 = 2π/ω1. Show that this time is also twice the distance between adjacent zeroes of
x(t).

6. Show that one can determine the decay parameter β for underdamped harmonic motion from a plot
of x(t). In particular, show that

β =
lnR

T1
, (5.76)

where R is the ratio of the amplitudes at any two adjacent maxima of x(t). Note that in deriving this
result, you will need the fact about T1 that you proved in Problem 5.

7. Consider a mass m hanging vertically from a spring with a spring constant k. In addition to gravity,
assume that the mass experiences a linear drag force Fdrag = −bv, where b is the drag coefficient. At
time t = 0, the mass is released from rest with the spring unstretched. Assuming that the motion is
critically damped, find x(t) and make a plot of your solution. Note that depending on how you choose
your origin in this problem, you may need to add a constant to Eq. (5.47) in order to enforce that this
solution satisfies the equation of motion.
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8. Show that the expression for v(t) on the second line of Eq. (5.50) is equivalent to the expression on
the first line. (Hint: the identity in Eq. (68) in Chapter 4 of these lecture notes might be helpful.)

9. Show the expression for the energy of an underdamped oscillator on the second line of Eq. (5.51) is
equivalent to the expression on the first line.

10. Take the derivative of Eq. (5.49) and use the equation of motion for the damped harmonic oscillator
in Eq. (5.22) to show that

dEtot

dt
= Fdragv . (5.77)

11. In this problem, we’re going to examine the behavior of the total energy Etot as a function of time
for overdamped and critically-damped motion in greater detail. We’re also going to see why shock
absorbers are designed to be critically damped.

(a) First, derive a general expression for Etot as a function of time for the case of an overdamped
oscillator. Express your result in terms of the initial position x0 and the initial velocity v0 of the
oscillator using Eq. (5.41). (Note: you are not not required to express your result in any special
form through the use of hyperbolic-function identities.)

(b) Now derive the corresponding expression for Etot for a critically-damped oscillator. Express your
result in terms of x0 and v0 using the relations in Eq. (5.48).

(c) You are now going to examine the effect that varying the ratio β/ω0 has on the time-evolution
of Etot. Use Mathematica to plot Etot vs. time for the overdamped case in part (a) for several
different values of β but with all other parameters fixed. In particular, plot four such curves: one
for β = 1.1 s−1, one for β = 1.2 s−1, one for β = 1.3 s−1, and one for β = 1.4 s−1. For all of
these curves, set ω0 = 1 s−1 and k = 10 N/m and take x0 = 20 cm and v0 = 0 as your boundary
conditions. Finally, add a curve to the same plot which corresponds to the critically-damped case
in part (b) for this same choice of parameters.

(d) Plot the value of the decay parameter Γdec as a function of β for this system for 0.1ω0 ≤ β ≤ 5ω0.
For what value of β is Γdec maximized?

(e) Use the graphical results from parts (c) and (d) to justify why you would typically want to engineer
a shock absorber to be critically damped rather than overdamped or underdamped.

12. In the case of very light damping, as we discussed in Sect. 5.6, the period of oscillation is given by
T1 ≈ T0. Derive the first non-vanishing correction to T1 in terms of T0 and Q.

13. The piecewise solution for x(t) in Eq. (5.70) for an oscillator with frictional damping corresponds to
the initial conditions x0 > 0 and v0 = 0. Derive the piecewise solution for the same system which
would result from taking the initial conditions to be x0 = 0, v0 < 0.

14. A block of mass m = 0.3 kg is attached to a long spring with spring constant k = 10 N/m is sliding
along a concrete floor. Use Mathematica to create a state-space plot describing the motion of the mass
if it starts oscillating from rest (i.e., with initial velocity v0 = 0) with the spring at a distance x0 = 3 m
away from its equilibrium position. The coefficients of kinetic and static friction between the block
and the table are µk = 0.5 and µs = 1.0, respectively.

15. An RC circuit is hooked up to a power source which delivers a square-wave voltage VPS that alternates
back and forth between VPS = V0 and VPS = −V0 with period T , as shown in Fig. 5.11. At time t = 0,
the switch is closed.

(a) Find the piecewise solution for the charge Q(t) on the capacitor as a function of t within the range
0 ≤ t ≤ 2T , assuming that the capacitor is initially uncharged.

(b) Use Mathematica to plot the solution for Q(t) over this range of t for V0 = 1 V, a capacitance
C = 0.002 F, a resistance R = 250 Ω, and a period T = 5 s.



Chapter 6

Driven Oscillations and Resonance

• The physics: Driven oscillations, resonance

• The math: Second-order inhomogeneous linear differential equations, the method of undetermined
coefficients, complexification

6.1 Second-Order Inomogeneous Linear Differential Equations

In the last chapter of these notes, we discussed a number of techniques for solving homogeneous second-order
linear differential equations. We then put these techniques to use to study the behavior of physical systems
like damped harmonic oscillators and LRC circuits which include both a restoring force and a dissipative force
which causes the system to lose energy to its surroundings. In this chapter, we will extend this discussion
to examine the effect of incorporating an external “driving force” into the system which injects energy into
to the system over time.

m

Fspring

x

v

F0 cos(ωt)

Fdrag

Figure 6.1: Illustration of a damped, driven harmonic oscillator system involving a block of mass m attached
to a spring. The damping in this system is the result of a piston which provides a linear drag force Fdrag =
−bv. A driving force Fdrive = F0 cos(ωt) results from shaking the wall to which the other end of the spring
is attached.

To explain what we mean by a “driving force,” it’s probably best to start with an example. In Fig. 6.1,
we provide an illustration of a damped, driven harmonic-oscillator system. In this example, the oscillator
consists of a block with mass m attached to a spring which supplies a restoring force Fspring = −kx). In
addition, the block is also attached to the end of a piston which provides a linear drag force Fdrag = −bv.
A driving force Fdrive = F0 cos(ω) is applied to the block by shaking the wall to which the other end of the
spring is attached so that it vibrates back and forth with a period T = 2π/ω. Putting together all of these
contributions to the net force

F = Fspring + Fdrag + Fdrive , (6.1)

we find that the equation of motion for the position x(t) of the block that we get from Newton’s second law

71



72 CHAPTER 6. DRIVEN OSCILLATIONS AND RESONANCE

for this example looks like

m
d2x

dt2
= − kx− b

dx

dt
+ F0 cos(ωt) . (6.2)

Physically, the interpretation of the driving term in Eq. (6.2) is reasonably straightforward. The motion
of the wall compresses or extends the spring and thereby changes the equilibrium position xeq of the block.
This is essentially the same effect we’ve seen many times in the presence of additional constant forces that
act on the system and change xeq — for example, the force of gravity acting on a block suspended from
a vertical spring. However, there is one important difference here: in this case, the additional force being
applied is time-dependent.

Mathematically, the interpretation of the driving term is straightforward as well. The driving term does
not involve x(t) or any of its derivatives, so it represents an inhomogeneous term in our differential equation.
In this example, the inhomogeneous term happened to take the form of a cosine function, but of course
we could imagine a lot of other functional forms which this term might take in different physical scenarios.
Clearly, if we want to understand driven harmonic oscillations, we’re first going to need to understand how
to deal with inhomogeneous linear differential equations.

Fortunately, there’s actually a lot that we already do understand about how to deal with equations of
this sort. In particular, we have already seen that the general solution y(x) to an inhomogeneous linear
differential equation of any order can be determined from the relation

y(x) = yc(x) + yp(x) , (6.3)

where yc(x) is the general solution to the complementary equation and yp(x) is any particular solution —
no matter how trivial — to the full, inhomogeneous equation. In the last chapter of these lecture notes,
we examined a few useful techniques for obtaining general solutions to certain kinds of homogeneous linear
differential equations. Thus, we already have an intuition about how to obtain yc(x) for a variety of systems
of physical interest, including the damped harmonic oscillator. However, we haven’t yet discussed how to
obtain a particular solution yp(x) to the full equation except for in the most trivial of cases — the case
in which the function f(x) in Eq. (6.4) is a constant. We therefore begin our discussion of inhomogeneous
second-order linear differential equations with a discussion of how to go about finding particular solutions
to these equations.

6.2 The Method of Undetermined Coefficients

The most general form for an inhomogeneous linear second-order differential equation is

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = f(x) , (6.4)

where P (x), Q(x), R(x), and the inhomogeneous term f(x) are all arbitrary functions of the independent
variable x. However, our primary motivation is to study the behavior of the damped, driven harmonic
oscillator and other mathematically analogous systems, we’re primarily going to focus on a particular subset
of equations with this general form. To wit, we’re going to focus on equations of the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) , (6.5)

where a, b, and c are constants.
A variety of useful techniques exist for solving differential equations of this form. We’ll begin by discussing

one of the simplest of these techniques — one which goes by the name of the Method of Undetermined

Coefficients. Really, this “method” is essentially a glorified name for what boils down to making an
educated guess about the form of yp(x) for the differential equation you’re trying to solve. This “method”
is actually very similar to the method that we used to obtain our general solution for a homogeneous linear
differential equation with constant coefficients. We begin by using use our intuition about the relationship
between functions and their derivatives to guess the functional form of yp(x). However, there will be a few
constant parameters — let’s call them Ai — in our parametrization for yp(x) whose values we still need to



6.2. THE METHOD OF UNDETERMINED COEFFICIENTS 73

determine. In order to determine the values for these parameters (our “undetermined coefficients”), we need
to plug our guess for yp(x) back into the differential equation and solve for them.

For example, let’s say that we were trying to find a particular solution to the differential equation

d2y

dx2
+ 2

dy

dx
+ y = ex . (6.6)

First, we need The function ex appears on the right-hand side of this equation, while the left-hand side
involves both y and its derivatives. We know that the derivative of ex with respect to x is just ex itself, so
one reasonable guess we could make for yp(x) is

yp(x)
?
= Aex , (6.7)

where A is our undetermined coefficient. Plugging this guess back into Eq. (6.6) gives us

d2

dx2
(Aex) + 2

d

dx
(Aex) +Aex = 4Aex = ex . (6.8)

Thus, our educated guess for yp(x) indeed is a solution to this equation — provided that our coefficient takes
the value A = 1/4. Thus, one particular solution to Eq. (6.6) is

yp(x) =
1

4
ex . (6.9)

The process of making successful guesses about the form of yp(x) for different kinds of inhomogeneous
functions f(x) is admittedly as much of an art as it is a science. Thus, it makes sense to draw from the well
of accumulated wisdom about such guesswork rather than stumbling afresh through the process of trial and
error each time we’re faced with a new differential equation that we’re trying to solve. Indeed, there are
certain functional forms for f(x) — including polynomial functions, exponentials, and certain trigonometric
functions — for which the correct “guess” for the form of yp(x) is well known. These functional forms for
f(x), along with the corresponding forms for yp(x), are listed in Table 6.1.

Functional form of f(x) Form of yp(x)

f(x) = C0 + C1x+ C2x
2 + . . . Cnx

n → yp(x) = A0 +A1x+A2x
2 + . . . Anx

n

f(x) = Ceax → yp(x) = Aeax

f(x) = C1 cos(ax) + C2 sin(ax) → yp(x) = A1 cos(ax) +A2 sin(ax)

f(x) = C1e
ax cos(bx) + C2e

ax sin(bx) → yp(x) = A1e
ax cos(bx) +A2e

ax sin(bx)

Table 6.1: Functional forms for the inhomogeneous term f(x) and the corresponding “guesses” for the
functional form of the particular solution yp(x) to be used in the Method of Undetermined Coefficients. The
coefficients Cn and the parameters a and b appearing in the expressions for f(x) are constants.

It should be clear that not every differential equation of the form Eq. (6.5) can be solved using the Method
of Undetermined Coefficients. This method is only useful for solving equations where the inhomogeneous
term f(x) has a particular functional form for which it’s easy to guess the form of yp(x). If f(x) doesn’t
have such a form, we’ll need to resort to other methods for finding our particular solution.

One additional comment is in order. This is that you should take care not to confuse the undetermined
coefficients Ai in Table 6.1 with the n undetermined constants Bi which characterize the general solution
y(x) an nth-order linear differential equation! The Ai are only “undetermined” in the sense that we not
know what their values are going to be at the moment when we write down our guess for yp(x). We have no
freedom to choose those values: they’re completely determined by the underlying physical parameters which
characterize the system. Instead, we solve for them by plugging yp(x) into the differential equation and find



74 CHAPTER 6. DRIVEN OSCILLATIONS AND RESONANCE

the specific values for the Ai for which that equation is valid for all x. At that point, these coefficients aren’t
undetermined anymore. By contrast, the undetermined constants Bi appearing in the general solution y(x)
truly are free parameters in the sense that y(x) will solve the corresponding differential equation no matter
matter what values I choose for the Bi. Additional information — such as information about the boundary
conditions which characterize the problem — is required in order to specify their values.

Example: Applying the Method of Unetermined Coefficients

As a further example of how the Method of Undetermined Coefficients is applied in practice, let’s use it to
find a particular solution to the differential equation

d2y

dx2
+ 3

dy

dx
+ y = 5 cos(2x) . (6.10)

The inhomogeneous term in this equation has the form f(x) = C1 cos(ax) + C2 sin(ax) with C2 = 0 and
a = 2, so Table 6.1 tells us that our “guess” for yp(x) should be yp(x) = A1 cos(2x) + A2 sin(2x). Plugging
this guess into Eq. (6.10) gives us

−4A1 cos(2x)− 4A2 sin(2x)− 6A1 sin(2x) + 6A2 cos(2x) +A1 cos(2x) +A2 sin(2x) = 5 cos(2x) . (6.11)

Collecting the sine and cosine terms together, we have

(6A2 − 3A1 − 5) cos(2x)− (6A1 + 3A2) sin(2x) = 0 . (6.12)

This equation can only be satisfied for all x if the coefficients of the sine and cosine terms vanish indepen-
dently. Thus, it must be true that

6A2 − 3A1 − 5 = 0

6A1 + 3A2 = 0 (6.13)

We can easily solve this system of equations for our two unknowns A1 and A2. The second equation tells us
that A2 = −2A1, and when we substitute this into the first equation, we arrive at the solution

A1 = − 1

3
, A2 =

2

3
. (6.14)

Thus, our particular solution to Eq. (6.10) is

yp(x) = − 1

3
cos(2x) +

2

3
sin(2x) . (6.15)

Now that we have a particular solution for Eq. (6.10), we can use it to construct the general solution
as well. Indeed, Eq. (6.3) tells us that all we need to do is find the general solution to the complementary
equation

d2y

dx2
+ 3

dy

dx
+ y = 0 . (6.16)

Since this is just a homogeneous linear second-order equation with constant coefficients, the solutions are

yc(x) = B1e
r+x + B2e

r−x , (6.17)

where the roots r± of the characteristic equation in this case are

r± = − 3

2
±
√
5

2
. (6.18)

Thus, our general solution to the full equation is

y(x) = B1e
−(3−

√
5)x/2 +B2e

−(3+
√
5)x/2 − 1

3
cos(2x) +

2

3
sin(2x) . (6.19)
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6.3 Solving the Driven Harmonic Oscillator Equation

Now that we have some sense of how to solve inhomogeneous linear differential equations using the Method
of Undetermined coefficients, let’s apply this knowledge to the physical system which motivated us to study
this technique in the first place: the damped, driven harmonic-oscillator. We’ll begin by considering a driving
force of the same form Fdrive = F0 cos(ωt) that we had in the example in Sect. 6.1. In other words, we will
assume that the driving force oscillates sinusoidally in time with an amplitude F0 and a frequency ω.

We’ll begin by using our usual definitions ω0 =
√
k/m and β = b/2m in order to rewrite Eq. (6.2) in the

form
d2x

dt
+ 2β

dx

dt
+ ω2

0x = ω2
0

F0

k
cos(ωt) . (6.20)

It’s important to remember that although ω0 and ω are both angular frequencies, they are different quantities
and don’t necessarily have anything to do with each other. The first, ω0, is determined by the physical
characteristics of the oscillator system itself — in particular, the mass m and the spring constant k. By
contrast, the second, ω, is the angular frequency the external driving force.

Let’s apply the method of undetermined coefficients to obtain the general solution for the driven-
harmonic-oscillator equation in Eq. (6.20). Since the inhomogeneous term in this equation — i.e., the
term associated with the driving force Fdrive — is a cosine function, we know that our educated guess for
the form of xp(t) should be

xp(t) = A1 cos(ωt) +A2 sin(ωt) . (6.21)

Substituting this into Eq. (6.20), we get

−ω2
[
A1 cos(ωt)+A2 sin(ωt)

]
−2ωβ

[
A1 sin(ωt)−A2 cos(ωt)

]
+ω2

0

[
A1 cos(ωt)+A2 sin(ωt)

]
= ω2

0

F0

k
cos(ωt) .

(6.22)
Collecting the cos(ωt) terms and the sin(ωt) in this equation together, we have

[
A1(ω

2
0 − ω2) + 2A2ωβ − ω2

0

F0

k

]
cos(ωt) +

[
A2(ω

2
0 − ω2)− 2A1ωβ

]
sin(ωt) = 0 . (6.23)

We are looking for a solution that satisfies the driven-harmonic-oscillator equation for all times t. In
order for this to be true of our proposed solution in Eq. (6.21), the coefficients of the cos(ωt) and sin(ωt)
terms in Eq. (6.23) must vanish independently. Imposing this condition gives us a pair of equations:

A1(ω
2
0 − ω2) + 2A2ωβ = ω2

0

F0

k

A2(ω
2
0 − ω2)− 2A1ωβ = 0 (6.24)

We can solve this system of two equations for the two unknowns A1 and A2. The result is

A1 =
ω2
0 − ω2

(ω2
0 − ω2)2 + 4β2ω2

ω2
0

F0

k

A2 =
2βω

(ω2
0 − ω2)2 + 4β2ω2

ω2
0

F0

k
. (6.25)

Plugging these results back into Eq. (6.21), we find that our particular solution to the driven-harmonic-
oscillator equation is

xp(t) =
(ω2

0 − ω2) cos(ωt) + 2βω sin(ωt)

(ω2
0 − ω2)2 − 4β2ω2

ω2
0

F0

k
. (6.26)

There are several other, equivalent ways of parametrizing this particular solution. For example, we can
make use of the trigonometric identities we have invoked many times before for similar purposes in order to
combine the sine and cosine terms together into a single cosine term with a phase. In other words, we can
use these identities to recast xp(t) in the form

xp(t) = A(ω) cos
[
ωt− δ(ω)

]
, (6.27)
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where the amplitude A(ω) and phase δ(ω) for a particular driving frequency ω are given by

A(ω) =
ω2
0√

(ω2
0 − ω2)2 + 4β2ω2

F0

k

δ(ω) = arctan

(
2βω

ω2
0 − ω2

)
. (6.28)

Now that we have a particular solution to Eq. (6.20), all we need in order to construct the general solution
to this equation is the general solution yc(x) to the complementary equation. In this case, the complementary
equation is just the damped-harmonic-oscillator equation. For the case of underdamped motion — i.e., the
case in which β < ω0 — we already know that the general solution to this equation can be written in the
form

xc(t) = Ace
−βt cos(ωt+ φ) , (6.29)

where we have called the initial amplitude Ac in order to distinguish it from the amplitude A(ω) in Eq. (6.27).
Obtaining the general solution x(t) for the driven harmonic oscillator is simply a matter of adding xc(t) and
xp(t) together:

x(t) = Ace
−βt cos(ω1t+ φ) +A(ω) cos

[
ωt− δ(ω)

]
. (6.30)

The first piece of this solution — the one that came from yc(x) — contains a decaying exponential which
suppresses its contribution to x(t) at times t≫ 1/β. Thus, this first piece represents a transient contribution
to x(t). By contrast, the second piece of the solution — the one that came from xp(t) has no such exponential
suppression and therefore dominates at late times. This piece therefore represents the steady-state solution
into which x(t) eventually settles after that transient contributions have died away.

Figure 6.2: Example curves showing the behavior of the general solution x(t) for a damped, driven harmonic
oscillator with the parameters ω0 = 2, β = 0.3, F0/k = 1, and ω = 1. The solid red, green dotted, and
blue dash-dotted curves correspond to different choices of initial conditions, while the black dashed curve
corresponds to the steady-state solution. We see that all of the solutions shown settle into the steady state
at late times.

In Fig. 6.2, we provide a few example x(t) curves corresponding to different choices of initial conditions
at t = 0 (as parametrized by the choice of Ac and φ). We see that indeed, regardless of their behavior at
early times, all of these solutions settle into the steady state at late times.

6.4 Resonance

We can see from Eq. (6.28) that the amplitude A(ω) of the particular solution xp(t) to the driven-harmonic-
oscillator equation clearly depends on the driving frequency ω in a non-trivial way. Let’s explore this
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dependence a little further.

d

dω
A(ω) =

2ω(ω2
0 − ω2)− 4β2ω

[(ω2
0 − ω2)2 + 4β2ω2]

3/2
ω2
0

F0

k
= 0 , (6.31)

which reduces to
ω(ω2

0 − ω2 + 2β2) = 0 . (6.32)

There are two solutions to this equation. One is ω = 0; the other is

ωres ≡
√
ω2
0 − 2β2 . (6.33)

This latter solution corresponds to a maximum of A(ω), and it occurs when the driving frequency ω coincides
with a particular “natural frequency” ωres associated with the oscillator. This maximum is illustrated in
Fig. 6.3, which shows a plot of A(ω) (normalized to the value of F0/k) as a function of ω (in arbitrary units) for
an oscillator with ω0 = 1 and β = 0.2. For values of , In this plot, we see a pronounced peak centered around
ωres which represents a a significant enhancement to the amplitude of oscillation for frequencies ω ≈ ωres.
This is our first example of resonance — a phenomenon in which two frequencies coincide, resulting in a
dramatic enhancement to the amplitude of oscillation. The frequency ωres at which this enhancement is the
greatest is known as the resonant frequency of the system.

Figure 6.3: The amplitude A(ω) of the particular solution xp(t) for a driven harmonic oscillator with ω0 = 1
and β = 0.2, shown as a function of ω. The amplitude function peaks at the resonant frequency ωres in
Eq. (6.33).

The size of the resonant enhancement to the amplitude — i.e., the value of A(ω) at ω ≈ ωres — is quite
sensitive to the value of β. Indeed, if we set ω = ωres in the formula for A(ω) in Eq. (6.28), we find that

A(ωres) =
ω2
0

2βω1

F0

k
. (6.34)

This means that the smaller β is, the larger the resonant enhancement to the amplitude will be. This
behavior is illustrated in Fig. 6.4, which shown the A(ω) curves for a variety of different values of β with
ω0 held fixed. It’s also worth remarking that when β is very small (in the sense that β ≪ ω0) and we have
ω1 ≈ ωres ≈ ω0, the resonant amplitude A(ω) is approximately proportional to the quality factor Q:

A(ωres) ≈ Q
F0

k
, for β ≪ ω0 . (6.35)

One further thing to note about the expression for A(ωres) in Eq. (6.34) is that it blows up in the β → 0
limit. In other words, in the absence of damping, the resonant enhancement to the amplitude becomes
infinite. This result can be understood as follows.
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Figure 6.4: The amplitude A(ω) of the particular solution xp(t) for a driven harmonic oscillator, shown as
a function of ω for a variety of different values of β. For each curve, we have once again taken ω0 = 1, as
in Fig. 6.3. We see that as β becomes smaller relative to ω0, the resonant enhancement to the amplitude at
ω ≈ ωres becomes more pronounced.

6.5 Energy in a Driven-Oscillator System

Let’s now turn to consider the energy stored in the damped, driven harmonic oscillator. We have seen that
for a simple harmonic oscillator, the total energy Etot of the system is conserved. We have seen that for a
damped oscillator, Etot decreases monotonically as a function of time due to the effect of the damping force.
However, if we include a driving force, the situation changes because the driving force serves to inject energy
into the system over time. Thus, in the presence of both a damping force and a driving force, there is a flow
of energy both into and out of the system.

The rate at which energy flows into this system at a particular time t is described by the instantaneous
power P (t) delivered by the external driving force. The instantaneous power P (t) delivered by a force to an
object is the rate at which work is done to that object:

P (t) =
dW

dt
. (6.36)

We can also use the definition of the work

W =

∫
F (x)dx (6.37)

in order to write P (t) as a product of the instantaneous force F (t) acting on the object and its velocity:

P (t) =
d

dt

∫
Fdx =

d

dt

∫
F
dx

dt
dt = F (t)v(t) . (6.38)

The power delivered to the system at early times, while the transient in Eq. (6.30) dominates, is highly
dependent on the initial conditions. Thus, we’ll focus on the situation at late times, after the system has
settled into the steady state. For the steady-state solution, the velocity v(t) is just the time derivative of
the expression for xp(t) in Eq. (6.27). Thus, we have

P (t) = −ωA(ω) sin[ωt− δ(ω)]F0 cos(ωt)

=
1

2
F0ωA(ω)

[
sin δ − sin(2ωt− δ)

]
, (6.39)
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where in going from the first to the second line, we have used the identity

sinα cosβ =
1

2

[
sin(α − β) + sin(α+ β)

]
. (6.40)

We see from Eq. (6.39) that even in the steady state, the instantaneous power P (t) is time-dependent.
However, this is to be expected, since the driving force itself oscillates with an angular frequency ω. For this
reason, it’s often more revealing to look at the average power 〈P 〉T delivered to the system over a period of
oscillation. The average power delivered over a period is just

〈P 〉T =
1

T

∫ T

0

P (t)dt . (6.41)

Plugging our expression for P (t) in Eq. (6.39) into this equation yields

〈P 〉T =
1

2
F0ωA(ω)

1

T

∫ T

0

[
sin δ − sin(2ωt− δ)

]
dt =

1

2
F0ωA(ω) sin δ . (6.42)

This expression for 〈P 〉T is certainly very compact, but its not terribly revealing. Therefore, in order to get
a better sense of how this quantity depends on the fundamental, underlying parameters ω, ω0, and β, let’s
plug our expressions for A(ω) and δ(ω) in Eq. (6.28) into this formula. Using the identity

sin(arctanx) =
x√

1 + x2
(6.43)

to simplify the result, we find that

〈P 〉T =
F0ω

2

F0

k

ω2
0√

(ω2 − ω2
0)

2 + 4β2ω2

2βω
ω2

0
−ω2

√
1 +

(
2βω

ω2
0
−ω2

)2

=
F 2
0

2k

2βω2ω2
0

(ω2 − ω2
0)

2 + 4β2ω2
(6.44)

This result indicates that the average power delivered by the driving force to the oscillator is constant in the
steady state. We also note that this result can be expressed in terms of the the quality factor Q = ω0/2β
rather than the damping parameter β. In fact the resulting expression even turns out to be a little cleaner:

〈P 〉T =
F 2
0 ω0

2k

Qω2ω2
0

ω2ω2
0 +Q2(ω2 − ω2

0)
2
. (6.45)

While Eq. (6.44) indicates that the driving force is constantly transferring energy to the oscillator while
the system is in the steady state, this does not mean that the total energy Etot of the system is increasing.
Indeed, as we saw in Eq. (6.28) the oscillation amplitude A(ω) is constant in the steady state — and thus
so is Etot. It’s important to keep in mind that a driven, damped harmonic oscillator is also constantly
losing energy to its surroundings as a result of the damping force. At early times, the rate at which energy
is injected into the system by the driving force (i.e., the power delivered) and the rate at which energy is
dissipated by the damping force can differ, and as a result there can be a net gain or loss in Etot. However,
as the system settles into the steady state, these two rates become equal, and as a result, Etot becomes
effectively constant.

Our formula for 〈P 〉T in Eq. (6.44) makes it clear that the average power delivered to the a driven
oscillator in the steady state is constant in time. However, it also tells us that this average power delivered
to the system depends sensitively of ω. This dependence is illustrated in Fig. 6.5, where we show 〈P 〉T as a
function of ω for ω0 = 1 and β = 0.2. We see from the figure that like the steady-state oscillation amplitude
A(ω), the average power 〈P 〉T delivered to the system also receives a resonant enhancement for values of ω
near some particular, resonant frequency. This frequency is not hard to determine. Simply by inspecting
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Figure 6.5: The average power 〈P 〉T over a cycle for a damped, driven harmonic oscillator as a function of
the driving frequency ω. In this plot, we have taken ω0 = 1 and β = 0.2. The two frequencies ω+ and ω− at
which 〈P 〉T = 〈P 〉T,max/2 are also indicated.

the denominator of Eq. (6.45), we can see that 〈P 〉T is maximized for ω = ω0. The corresponding value of
〈P 〉T at this resonant frequency is

〈P 〉T,max =
F 2
0 ω0Q

2k
=

F 2
0 ω

2
0

4kβ
. (6.46)

It’s also important to keep in mind that these resonance effects are felt not merely when the driving
frequency ω is precisely equal to ω0, but also over a range of nearby values where ω ≈ ω0 — the resonant
frequency just represents the frequency at which this effect is maximized. It is therefore pertinent to ask
exactly how far away ω can be from ω0 before the resonance effect ceases to be important. In other words,
we don’t just want to know about the height of the resonance peak in Fig. 6.5, but about its width as well.

There are a variety of ways of characterizing how broad a resonance peak is. However, one of the most
commonly used conventions is to quote the full width at half maximum (FWHW). The full width at half
maximum is the is the difference

(∆ω)FWHM ≡ ω+ − ω− (6.47)

between the two frequencies ω± on either side of the peak at which 〈P 〉T = 〈P 〉T,max/2.
1 These frequencies

are indicated in Fig. 6.5. It can be shown (see Problem 5) that the values of ω+ and ω− in this case are

ω± =
√
β2 + ω2

0 ± β (6.48)

so the width of the peak is
(∆ω)FWHM = 2β . (6.49)

Thus, we see that as the damping parameter β increases (or, equivalently, as the quality factor Q = ω0/2β
decreases for a fixed value of ω0), the width of the resonance peak increases. However, at the same time,
increasing β also decreases the height of the resonance peak, as indicated in Eq. (6.46). The net result of
these two effects on 〈P 〉T is illustrated in Fig. 6.6

6.6 Complexification

There is an alternative technique for obtaining our particular solution to the damped-harmonic-oscillator
equation. This technique can be used in conjunction with the method of undetermined coefficients to find

1It should be emphasized here that the use of FWHM as a standard for characterizing the width of a resonance peak is a
common convention in a wide variety (no pun intended) of fields from particle physics to astronomy to electrical engineering.
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Figure 6.6: The average power 〈P 〉T over a cycle for a damped, driven harmonic oscillator as a function of
the driving frequency ω for several different choices of the damping parameter β. We have taken ω0 = 1 for
all of the curves shown.

particular solutions to differential equations of the form given in Eq. (6.5) in cases where f(x) is a sine or
cosine function. This technique is called complexification, and it’s typically more efficient than the method
we used for obtaining xp(t) in Sect. 6.3.

As we mentioned above, complexification is a procedure which is applicable in cases where the inhomoge-
neous term f(x) in the differential equation we’re trying to solve takes the form of a since or cosine function.
The first step in this procedure is to replace the function f(x) in our differential equation with a complex

function f̃(x). In particular, we define f̃(x) such that f(x) is the real part of this complex function:

f(x) = Re[f̃(x)] . (6.50)

For example, let’s say that we were dealing with a differential equation where the inhomogeneous term f(x)
was just a single cosine function of the form f(x) = f0 cos(λt), where λ and f0 are both constants. In this
case, we would make the replacement

f(x) = f0 cos(λt) −→ f̃(x) = f0e
iλx . (6.51)

Likewise, if we had f(x) = f0 sin(λt), we wold make the replacement

f(x) = f0 sin(λx) −→ f̃(x) = − if0e
iλx . (6.52)

Replacing f(x) by the complex function f̃(x) turns our original, real differential equation into a complex
equation. It therefore makes sense that the solutions to this differential equation will also be complex
functions. We’ll use the symbol ỹ(x) for these functions to emphasize the fact that they’re complex. However,
these ỹ(x) aren’t just any old complex functions. We know that the real part of the complex equation

a
d2ỹ

dx2
+ b

dỹ

dx
+ cỹ = f̃(x) (6.53)

for ỹ(x) is just the original, real differential equation we were trying to solve.2 Thus, the function y(x) which
solves our original differential equation must be the real part of ỹ(x):

y(x) = Re[ỹ(x)] . (6.54)

2As we showed in Chapter 3 of these lecture notes, taking the real part of a complex function and taking the derivative of
that function commute, meaning that you’ll get the same result regardless of the order in which you perform these operations.
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This means that if we can find a particular solution ỹp(x) to the complex differential equation in Eq. (6.53),
all we need to do in order to obtain the corresponding particular solution yp(x) for our original equation is
to take the real part of ỹp(x).

So how do we find our particular solution to the complex equation in Eq. (6.53)? The easiest way is to
use the method of undetermined coefficients. The only difference is that now our undetermined coefficients
will in general be complex. We are assuming here that f(x) is a sine or cosine function, and thus that f̃(x)

is the complex exponential, as in the examples in Eqs. (6.51) and (6.51). For a function f̃(x) of this form,
our intuition — or a glance at our table of educated guesses in Sect. 6.2 — tells us that ỹp(x) will also have
the form of a complex exponential:

ỹp(x) = Ãeiλx , (6.55)

where we have written the coefficient Ã with a tilde to emphasize that it is in general complex. Solving our
complexified differential equation is now just a matter of plugging this expression into Eq. (6.53) and solving

for the undetermined coefficient Ã. Once we’ve done this, we simply take the real part of ỹp(x) to get yp(x).
You may wonder why anyone would want to bother going through this complexification procedure in

order to obtain yp(x) when we know perfectly well how to obtain yp(t) directly from the real differential
equation. The reason is that exponential functions are easier to deal with than trigonometric functions when
one is taking derivatives. Indeed, the derivative of eiλx with respect to x is proportional to eiλx itself, while
the derivative of cos(λx) is proportional to sin(λx) and vice versa. This means that solving for ỹ(x) is often
much easier and faster than solving for y(x) directly because there’s only one functional form you need to
keep track of.

Example: Driven LRC Circuit

C

L

RVPS

Figure 6.7: An LRC circuit hooked up to an AC power supply which delivers a driving voltage VPS =
V0 cos(ωt).

In order to gain a better sense of how to implement this technique in practice, let’s walk through an
explicit example. Consider the LRC circuit shown in Fig. 6.7. The circuit includes an AC power supply
which delivers a voltage VPS = V0 cos(ωt). We have studied circuits like this before. Indeed, we have used
the method of complex impedances to find the steady-state solution for the charge Q(t) on the capacitor, the
current I(t) in the circuit, etc.However, we have not yet derived a general solution for these quantities which
includes transient solutions as well as the steady-state piece. Let’s now use complexification in conjunction
with the method of undetermined coefficients to obtain such a general solution.

Applying Kirchhoff’s loop rule for this circuit gives

V0 cos(ωt)−R
dQ

dt
− L

d2Q

dt2
− Q

C
= 0 , (6.56)

which we can rearrange into
d2Q

dt2
+

R

L

dQ

dt
+

Q

LC
=

V0

L
cos(ωt) . (6.57)
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This is a second-order linear differential equation with constant coefficients and an inhomogeneous term of
the form f(x) = f0 cos(λt), so we can solve for Q(t) by complexifying the equation and using the method of

undetermined coefficients to find a solution for the complexified charge Q̃(t). Our complexified equation is

d2Q̃

dt2
+

R

L

dQ̃

dt
+

Q̃

LC
=

V0

L
eiωt , (6.58)

and our intuition tells us that that our solution is going to have the form

Q̃(t) = Ãeiωt . (6.59)

Plugging this ansatz for Q̃(t) into Eq. (6.58) gives us

−Ãω2eiωt + iÃ
ωR

L
eiωt + Ã

1

LC
eiωt =

V0

L
eiωt . (6.60)

Since eiω appears in every term, we can cancel this factor and then multiply both sides of the equation by
LC to get

−ÃLCω2 + iÃRCω + Ã = V0C . (6.61)

The equation in Eq. (6.61) is a complex equation. It is equivalent to two real equations — one from the real

part of the equation and one from the imaginary part. Likewise, the complex parameter Ã = Re[Ã]+ iIm[Ã]

embodies two unknowns: the real part Re[Ã] and the imaginary part Im[Ã]. Specifically, the equations that
we get from Eq. (6.61) for these two unknowns are

Re[Ã](1 − LCω2)− Im[Ã]RCω = V0C

Im[Ã](1− LCω2) + Re[Ã]RCω = 0 . (6.62)

Solving this system of equations for Re[Ã] and Im[Ã], we find that

Re[Ã] = V0C
1− (LCω2)

(RCω)2 + (1− LCω2)2

Im[Ã] = −V0C
RCω

(RCω)2 + (1− LCω2)2
. (6.63)

These results indicate that that the value of the complex coefficient Ã depends on the driving frequency ω
(but not on t). To emphasize this, we’ll make the ω dependence of Ã explicit from this point forward by

writing it as Ã(ω). Putting the real and imaginary pieces from Eq. (6.63), we have

Ã(ω) =
V0C

[
(1 − LCω2)− iRCω

]

(RCω)2 + (1− LCω2)2
. (6.64)

Plugging this result into Eq. (6.59) and using Euler’s theorem to expand the complex exponential gives us

Q̃p(t) = −
V0C

[
(LCω2 − 1) + iRCω

]

(RCω)2 + (1 − LCω2)2

[
cos(ωt) + i sin(ωt)

]

=
V0C

[
(1− LCω2) cos(ωt) + RCω sin(ωt)

]

(RCω)2 + (1− LCω2)2
+ i

V0C
[
(1 − LCω2) sin(ωt)−RCω cos(ωt)

]

(RCω)2 + (1− LCω2)2
.(6.65)

The corresponding solution Qp(t) to our original differential equation in Eq. (6.57) is just the real part of
this expression:

Q(t) = Re[Q̃(t)] =
V0C

(RCω)2 + (LCω2 − 1)2

[
(1− LCω2) cos(ωt) +RCω sin(ωt)

]
. (6.66)
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There is actually an interesting connection between this particular solution to Eq. (6.57) and the solution
we would have obtained if we had used the method of complex impedances. This connection is worth
exploring in a little bit more detail. If we had used the method of complex impedances, we would have
begun by writing down the complex version of our Kirchoff’s-loop-rule equation

ṼPS − ĨZR − ĨZL − ĨZC = 0 , (6.67)

where ṼPS = V0e
iωt and Ĩ is the complex current. Solving this equation for Ĩ, we obtain

Ĩ =
ṼPS

ZR + ZL + ZC
=

V0e
iωt

R+ iLω − i
ωC

. (6.68)

The real current I(t) is just the real part of Ĩ. It’s easiest to identify the real part of a complex quantity

when that quantity is written in rectangular form. Do rewrite Ĩ in this form, we begin by multiplying
and dividing the expression in Eq. (6.68) by the complex conjugate of the denominator and expanding the
complex exponential using Euler’s theroem:

Ĩ = V0

R− i
(
Lω − 1

ωC

)

R2 +
(
Lω − 1

ωC

)2
[
cos(ωt) + i sin(ωt)

]
. (6.69)

Thus, we find that

Ĩ = V0Cω
RCω − i(LCω2 − 1)

(RCω)2 + (1− LCω2)2
[
cos(ωt) + i sin(ωt)

]

= V0Cω
RCω cos(ωt)− (1− LCω2) sin(ωt)

(RCω)2 + (1− LCω2)2
+ iV0Cω

RCω sin(ωt) + (1− LCω2) cos(ωt)

(RCω)2 + (1− LCω2)2
. (6.70)

Since the real current I(t) is just the real part of this expression, we have

I(t) = V0Cω
RCω cos(ωt)− (1− LCω2) sin(ωt)

(RCω)2 + (1 − LCω2)2
. (6.71)

Finally, since Q(t) is just the integral of I(t) with respect to t, we integrate this result to obtain our final
expression for the charge on the capacitor as a function of time:3

Q(t) =

∫ t

0

I(t′)dt′ = V0Cω
RCω sin(ωt) + (LCω2 − 1) cos(ωt)

(RCω)2 + (1 − LCω2)2
. (6.72)

This expression is identical to the solution Qp(t) in Eq. (6.66) that we obtained from our complexification
procedure in conjuction with the method of undetermined coefficients!

6.7 The Principle of Superposition

The educated guesswork that underlies the method of undetermined coefficients is certainly useful for solving
differential equations where the inhomogeneous term f(x) has one of the particular functional forms appear-
ing in Table 6.1. However, we don’t yet have a good method for finding yp(x) in cases where f(x) doesn’t
happen to have one of these functional forms. For example, let’s say that f(x) includes both a cosine piece
and a polynomial piece. What does the solution for y(x) look like in that case?

It turns out that for any linear differential equation in which the inhomogeneous term f(x) is a direct
sum of several individual functions fi(x) — i.e., where

f(x) =
N∑

i

fi(x) , (6.73)

3If you’re worried about the fact that there’s no constant of integration in Eq. (6.72), don’t be. We’re not interested in
applying boundary conditions yet. At this point, we’re just looking for a particular solution which we can use in order to
construct the general solution for Q(t). Any particular solution will do, regardless of what the value of Qp(t) happens to be at
t = 0. After we have our general solution, then it’s time to apply boundary conditions.



6.7. THE PRINCIPLE OF SUPERPOSITION 85

where N is the number of functions in the sum — there is actually a general principle that we can use
in order to obtain a particular solution yp(x) to that equation. This principle is called the principle of

superposition. It states that whenever f(x) takes this form, there exists a particular solution of the form

yp(x) =

N∑

i=1

ypi(x) , (6.74)

where each of the N functions ypi(x), etc., is the particular solution to the differential equation with f(x)
replaced by fi(x). For example, if we had a second-order differential equation with the general form given
in Eq. (6.4), the yp(x) would be the solutions to the equations

P (x)
d2ypi
dx2

+Q(x)
dypi
dx

+R(x)ypi = fi(x) . (6.75)

The principle of superposition is actually not terribly difficult to prove. We’ll begin by demonstrating
that it works for a second-order equation in the N = 2 case in which f(x) = f1(x) + f2(x). In this case,
Eq. (6.74) says that yp(x) is the sum of two functions yp1(x) and yp2(x). Plugging this into the general
expression in Eq. (6.4), we find that

f1(x) + f2(x) = P (x)
d2

dx2
(yp1 + yp2) +Q(x)

d

dx
(yp1 + yp2) +R(x)(yp1 + yp2)

=

[
P (x)

d2yp1
dx2

+Q(x)
dyp1
dx

+R(x)yp1

]
+

[
P (x)

d2yp2
dx2

+Q(x)
dyp2
dx

+R(x)yp2

]
.(6.76)

This equality will certainly be satisfied if the first term in brackets on the right-hand side is equal to f1(x)
and the second term in brackets is equal to f2(x). (There may be other solutions too, but we’re just looking
for one particular solution that works.) Thus, in this case, the principle of superposition holds. Moreover,
it’s pretty clear that adding more terms to f(x) won’t qualitatively change anything: for each additional
fi(x) that we add to the left-hand side of Eq. (6.76), a corresponding term in ypi(x) will appear on the
right-hand side. Furthermore, generalizing this result to linear differential equations of any arbitrary order
is straightforward. This is because the derivative of a sum of functions is equal to the sum of the derivatives
of those functions. Thus, for a derivative of any order, we have

dn

dxn

N∑

i=1

ypi =
N∑

i=1

dnypi
dxn

. (6.77)

This means that as long as the differential equation we’re dealing with is linear — i.e., that all of the terms
in that equation are proportion to y(x) or to one of its derivatives — we can group terms in exactly the
same way that we grouped them in Eq. (6.76).

The principle of superposition is actually an incredibly powerful result. Indeed, as we shall see before
too long, it’s the underlying principle behind two methods which allow us to solve a inhomogeneous linear
differential equations for any arbitrary functional form that f(x) might happen to take. These methods
are Fourier decomposition and the method of Green’s functions, and they are the subject of the next two
chapters of these lecture notes.

Problems

1. Consider the differential equation

3
d2y

dx2
+ 2

dy

dx
= − e3x . (6.78)

(a) Find a particular solution to this equation.

(b) Find the general solution to the equation.

(c) Find the solution to the equation for the boundary conditions y(0) = 0 and dy/dx = 0 at x = 0.
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2. Find a particular solution to the differential equation

d2y

dx2
+ 2

dy

dx
+ 17y = 60e−4x sin(5x) . (6.79)

3. For a damped, driven harmonic oscillator in the steady state, the acceleration a(t) of the oscillating
object as a function of time is given by

a(t) =
d2x

dt2
= − ω2A(ω) cos[ωt− δ(ω)] . (6.80)

Let us define the “acceleration amplitude” a(ω) = ω2A(ω), which represents the maximum acceleration
the object attains as a function of the driving frequency ω. What is the value of ω for which this
acceleration amplitude is maximized?

4. In Sect. 6.5, we showed that the average power 〈P 〉T delivered to a damped, driven oscillator by the
driving force in the steady state was given by Eq. (6.45). Show that the average power 〈Pdrag〉T
dissipated by the drag force in the steady state is equal in magnitude to 〈P 〉T .

5. Derive the expression for ω± in Eq. (6.48).

6. Find a particular solution to the differential equation

d2y

dx2
+ y = sinhx . (6.81)

7. In this problem, you are going to investigate the case of an undamped , driven oscillator — i.e., a simple
harmonic oscillator oscillator with a driving force, but with β = 0. The equation of motion for such
an oscillator is

d2x

dt2
+ ω2

0x = ω2
0

F

k
cos(ωt) . (6.82)

(a) Find a particular solution xp(t) to this equation for general ω. What happens to xp(t) when
ω = ω0?

(b) The case in which ω0 = ω is a special case in which the solution in part (a) does not apply. Show
that the function

xp(t) =
F0

4k

[
cos(ω0t) + 2tω0 sin(ω0t)

]
(6.83)

is a particular solution to the undamped, driven oscillator equation for ω = ω0.

(c) Use the particular solutions you found in parts (a) and (b) to construct the general solution x(t)
both for the general case in which ω 6= ω0 and for the special case in which ω = ω0. Express
your answer in each case in terms of the initial position x0 and initial velocity v0 of the oscillating
object.

(d) Now let’s see what these solutions actually look like for a give choice of parameters. In particular,
as an example, let’s take ω0 = 1 s−1, F0 = 1 N, and k = 1 N/m. Use Mathematica to plot the
x(t) curves for ω = 0.7 s−1, for ω = 0.9 s−1, for ω = 0.95 s−1, and for ω = 1 s−1 together on the
same plot for the boundary conditions x0 = 0 and v0 = 0. Make a similar plot for the boundary
conditions x0 = 40 m, v0 = 0.

(e) Qualitatively speaking, what happens to x(t) for ω 6= ω0 in the limit as t → ∞ ? What happens
to the solution for ω = ω0 in this same limit?

8. In this problem, we’re going to compare the solution to the damped, driven oscillator equation with
a driving force F (t) = F0 cos(ωt) to the solution we get from the corresponding equation with F (t)
approximated by a Maclaurin series.

(a) Find the Maclaurin-series approximation for F (t) as a function of t, retaining terms up to and
including the t2 term.
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(b) Find the particular solution xp,approx(t) to the driven, damped oscillator equation with the exact
functional form for F (t) replaced by your Taylor-series approximation from part (a).

(c) Use Mathematica to plot your solution xp,approx(t) from part (b) together with the particular
solution xp(t) to the equation with the exact F (t) = F0 cos(ωt). For your plot, take F0 = 1 N,
k = 1 N/m, and ω0 = 1 s−1, with β = 0.2ω0 and ω = 0.5ω0.

(d) For this choice of parameters, how long does take (in units of the period T = 2π/ω) before
xp,approx(t) differs from xp(t) by 10%? (Note: you may use Mathematica to answer this if you
wish.) The lesson here is that Taylor series are not necessarily the best way of approximating
periodic functions. You typically need to keep a significant number of terms in order for the
solution to remain accurate over even a few periods of oscillation. As we shall see in the next
chapter, there are far better ways of approximating periodic functions!



Chapter 7

Fourier Analysis

• The physics: Driven oscillations with periodic driving functions

• The math: Fourier series, Fourier decomposition, orthogonal functions

7.1 Superposition and the Decomposition of Functions

In Chapter 6 of these lecture notes, we discussed some of the techniques which can be used to solve inhomo-
geneous linear differential equations. One of these techniques was based upon the principle of superposition
— a principle which becomes relevant when the inhomogeneous term f(x) takes the form of a direct sum.
This principle states that if f(x) = f1(x) + f2(x) + . . ., then yp(x) = yp1 + yp2 + . . . is a particular solution
to the differential equation, where yp1(x) is the solution to the corresponding equation with f(x) replaced
by f1(x), where yp2(x) is the solution to the corresponding equation with f(x) replaced by f2(x), and so on.

This principle of superposition might initially seem of only limited applicability. Indeed, in order for us
to put it to use, not only must f(x) take the form of a direct sum, but we must also be able to find the
solution ypi(x) for each of the individual functions fi(x) appearing in that sum. However, as we shall see
both in this chapter and in the next, there are general methods for writing any arbitrary function f(x) as a
sum of functions fi(x) for which obtaining the corresponding ypi(x) is straightforward.

7.2 Fourier Series

Let’s begin by examining the case in which our function f(t) is periodic in the independent variable t. In
other words, after some fixed interval T , the function f(t) repeats itself, and we have

f(t+ T ) = f(t) . (7.1)

It can be shown that nearly any periodic function of this sort can be expressed as an infinite sum of sine and
cosine functions angular whose angular frequencies which are integer multiples of the fundamental angular
frequency ω = 2π/T associated with the period T . In particular, it can be shown that

f(t) =
∞∑

n=0

[
an cos(nωt) + bn sin(nωt)

]
, (7.2)

where an and bn are constant coefficients for each term. These coefficients represent the amplitudes of the
individual cosine and sine terms in the series, respectively. This way of representing a function is called a
Fourier series, and the an and bn are called Fourier coefficients. A given function f(x) is specified by a
particular set of values for these coefficients. The process of decomposing a function into a set of sine and
cosine terms in this way is often referred to as Fourier decomposition.

The assertion that practically any periodic function can be represented as a sum of sine and cosine waves
of different frequencies might at first seem somewhat surprising. Therefore, in order to illustrate how these

88
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Figure 7.1: A square wave with amplitude f0 and period T .

sine and cosine waves conspire to reproduce a given function, we’ll begin by looking a a concrete example.
In particular, let’s examine how this works for the square wave shown in Fig. 7.1. For the moment, we’re
just interested in getting a sense of how Fourier decomposition works qualitatively. We’ll deal with the
quantitative aspects of Fourier analysis — including how to explicitly calculate the coefficients an and bn for
any arbitrary function.

Figure 7.2: In each panel of this figure, we show the first N individual terms (solid curves) in the Fourier-
series representation for a square wave with period T = 2π. In addition, we also show the sum (black dashed
curve) of these N contributions. As more and more terms are included, this partial sum looks more and
more like a square wave. In the limit as N →∞, the sum converges to the square wave.

In Fig. 7.2, we illustrate how the individual terms in the Fourier series conspire to reproduce our original
square wave. Each panel of this figure shows the individual terms in the Fourier series for which n ≤ N for
different values of N . In addition, in each panel, we also display the curve curve which represents the sum
of these individual contributions. In general, the sum

f(t) =

N∑

n=0

[
an cos(nωt) + bn sin(nωt)

]
(7.3)
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of terms in a Fourier series up to some finite value of N is called a partial sum. As we shall verify explicitly
in Sect. 7.4, all of the coefficients an vanish for this particular function, so the Fourier series for our square
wave consists only of sine terms.1 Moreover, it turns out that the bn for even values of n also vanish, which
is why we have included plots only for odd values of N .

Figure 7.3: Curves corresponding to partial sums in the Fourier expansion of a square wave for N = 1 (red
curve), N = 3 (yellow curve), N = 9 (light blue curve), and N = 35 (purple curve). As more and more
terms in the Fourier series are included, the partial sum becomes a better and better approximation to the
square wave. In the n→∞ limit, the series converges to the value of the function.

We see from Fig. 7.2 that when N is small and only a few terms are included, the resulting curve doesn’t
look much like a square wave. However, when more and more terms are included in the sum, the resemblance
becomes more and more apparent. In the N →∞ limit, the sum converges to the square wave. In Fig. 7.3,
we compare the curve for the partial sums with N = 1, N = 3, N = 9, and N = 35 to the square-wave
function itself on the interval 0 ≤ t ≤ 2T . We see from the figure that the partial sums which include only
the first few terms bear only a vague resemblance to the original function, but the partial sum for N = 35
already provides a very good approximation to a square wave.

When we said above that “nearly any” periodic function f(t) can be expressed as a Fourier series, we
should probably be a bit more explicit about what we meant. Not every periodic function can be written in
this way. However, the criteria that f(t) must satisfy are not terribly restrictive. These criteria are called
the Dirichlet conditions, and they are

1. The number of discontinuities for the function f(t) on the interval 0 ≤ t ≤ T is finite.

2. The number of extrema — i.e., maxima or minima — of f(t) on this same interval is finite.

3. The integral
∫ T

0
|f(t)|dt is finite.

If a function f(t) satisfies these criteria, the series in Eq. (7.2) it is guaranteed to converge to the value of
f(t) at every point where the function is defined. Moreover, at any point t = td where f(t) is discontinuous,
the series is guaranteed to converge to midpoint

fmid(td) = |f+(td)− f−(td)| ≡
∣∣ lim
t→t+d

f(t)− lim
t→t−d

f(t)
∣∣ (7.4)

between the two limiting values f+(x) and f−(x) on either side of the discontinuity. The Dirichlet conditions
are satisfied by a wide variety of functions, including square waves (which have discontinuities), triangle waves
(which have discontinuous derivatives), and nearly any other periodic function2 you’d ever be interested in
analyzing from a physics perspective.

1One might have guessed that this might be the case based on the fact that this step function is an odd function, while the
cosine function is even.

2In fact, a lot of periodic distributions which technically aren’t even functions can be represented this way.
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7.3 Orthogonal Functions

Now that we have a qualitative sense of what Fourier decomposition is all about, we’re ready to start looking
at how this procedure works in more mathematical detail. However, in order to understand how Fourier
decomposition works at a deeper level, we first need to discuss a particular property which the functions
sin(nωt) and cos(nωt) possess. This property is called orthogonality, and it is the foundation on which
the entire mechanism of Fourier decomposition rests.

Rather than beginning with an abstract definition of what it means for two functions to be orthogonal
right off the bat, we’re instead going to build toward our definition of orthogonality from the ground up —
i.e., by generalizing from properties of the sin(nωt) and cos(nωt) that we already understand. In particular,
our starting point will be to consider what the average of the product of two such functions is over the
interval 0 ≤ t ≤ T , where ω = 2π/T . In other words, we’re looking to evaluate the integrals

I(cc)mn =
1

T

∫ T

0

cos(mωt) cos(nωt)dt

I(ss)mn =
1

T

∫ T

0

cos(mωt) cos(nωt)dt

I(cs)mn =
1

T

∫ T

0

cos(mωt) sin(nωt)dt , (7.5)

where m and n are two integers and where ω = 2π/T .
We can evaluate these integrals fairly easily by using Euler’s Theorem to express the sine and cosine

functions in terms of complex exponentials. For example, for I(cc)mn we have

I(cc)mn =

∫ T

0

cos(mωt) cos(nωt)dt

=
1

4T

∫ T

0

[
eimωt + e−imωt

][
eimωt + e−imωt

]
dt

=
1

4T

∫ T

0

[
ei(m+n)ωt + e−i(m+n)ωt + ei(m−n)ωt + e−i(m−n)ωt

]
dt

=
1

2T

∫ T

0

{
cos[(m− n)ωt] + cos[(m+ n)ωt]

}
dt . (7.6)

For cases in which m 6= n, we

I(cc)mn =
sin[(m− n)ωt]

2(m− n)ωT

∣∣∣∣
T

0

+
sin[(m+ n)ωt]

2(m+ n)ωT

∣∣∣∣
T

0

=
sin[2π(m− n)]− sin(0)

4π(m− n)
+

sin[2π(m+ n)]− sin(0)

4π(m+ n)ω

= 0 (7.7)

where we have used the fact that ωT = 2π in going from the first to the second line and the fact that

sin(2πp) = 0 for any integer p. Thus, we see that I(cc)mn vanishes when the integers m and n are different,
regardless of their values. By contrast, when m and n are equal, the corresponding integral does not vanish.
For example, for the special case in which m = n = 0, we have

I(cc)mm =
1

2T

∫ T

0

[
cos(0) + cos(0)

]
dt =

1

T

∫ T

0

dt = 1 .

Likewise, in the special case in which m = n 6= 0, we have

I(cc)mm =
1

2T

∫ T

0

[
cos(0) + cos(2mωt)

]
dt =

[
t

2T
− sin(2mωt)

2mωT

]∣∣∣∣
T

0

=
1

2
+

sin(4πm)− sin(0)

4πm
=

1

2
.
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Collecting all of these different cases together, we can write

1

T

∫ T

0

cos(mωt) cos(nωt)dt =






0 m 6= n
1
2 m = n 6= 0

1 m = n = 0 .

(7.8)

Performing the I(ss)mn integral yields a similar (but not quite identical) result:

1

T

∫ T

0

sin(mωt) sin(nωt)dt =





0 m 6= n
1
2 m = n 6= 0

0 m = n = 0 .

(7.9)

Finally, it can be shown that the I(cs)mn integral vanishes regardless of the values of m and n:

1

T

∫ T

0

cos(mωt) sin(nωt)dt = 0 . (7.10)

This last result is not really a surprise, since cos(mωt) is an even function of t and sin(mωt) is an odd
function of t. Thus, if we had been integrating product of these two functions from −T/2 to T/2 (or some
other interval symmetric around t = 0) rather than from 0 to T , we’d have known that the value of the
integral would have had to be zero without even having to calculate anything. However, we also know that
cos(nωt+ T ) = cos(nωt) and sin(nωt+ T ) = sin(nωt) for any integer n. This means that

∫ 0

−T/2

cos(mωt) sin(nωt)dt =

∫ T

T/2

cos(mωt) sin(nωt)dt . (7.11)

Now we are ready to discuss what we mean by orthogonality. The relations in Eq. (7.8), Eq. (7.9), and
Eq. (7.10) tell us that unless m = n, the integral of the product of any two sine or cosine functions vanishes
on the interval 0 ≤ t ≤ T . The functions cos(nωt) and sin(mωt) are therefore examples of what are called
orthogonal functions. Two functions f(x) and g(x) of the independent variable x are said to be orthogonal
over the interval a ≤ x ≤ b if ∫ b

a

f∗(x)g(x)dt = 0 , (7.12)

where f∗(x) denotes the complex conjugate of f(x). We see from Eq. (7.10) that cos(mωt) and sin(nωt)
are orthogonal to each other according to this definition for any pair or integers m and n. (Since cos(nωt)
and sin(nωt) are purely real functions of t, the complex conjugate of each function is equal to the function
itself.) Moreover, Eqs. (7.8) and (7.9) tell us that cos(mωt) is orthogonal to cos(nωt) and that sin(mωt) is
orthogonal to sin(nωt) for all m 6= n.

The sine and cosine functions are certainly not the only familiar functions which exhibit orthogonality
properties of this sort. For example, the set of complex exponential functions of the form einωt, where n is
an integer and ω = 2π/T , are also mutually orthogonal. Indeed, if we take f∗(x) = e−imωt and g(x) = einωt

in Eq. (7.12) with m 6= n, we find that

1

T

∫ T

0

e−imωteinωtdt =
1

T

∫ T

0

e−i(m−n)ωtdt

=
ie−i(m−n)ωt

(m− n)ωT

∣∣∣∣
T

0

=
i

2π

[
e−2πi(m−n) − e0

]

=
i

2π

{
cos[2π(m− n)]− i sin[2π(m− n)]− 1

}

= 0 , (7.13)
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where in the last step, we have once again used the fact that cos(2πp) = 1 and sin(2πp) = 0 for any integer
p. By contrast, when m = n, we find that

1

T

∫ T

0

e−imωteimωtdt =
1

T

∫ T

0

e0dt = 1 . (7.14)

Collecting these together, we can write

1

T

∫ T

0

e−imωteinωtdt =

{
0 m 6= n

1 m = n
(7.15)

As we shall soon see, it is also possible to use complex exponentials of this sort to construct a Fourier
expansion for a complex function f(t).

7.4 Determining the Fourier Coefficients

As for the other coefficients in the Fourier expansion, there is a trick we can use to determine them for any
periodic function f(x). We’ll begin by determining the coefficients an of the cosine terms in Eq. (7.2). Our
first step will be to multiply each side of Eq.‘(7.2) by cos(mωt)/T , where m is a positive integer:

1

T
f(t) cos(mωt) =

1

T

∞∑

n=0

[
an cos(nωt) cos(mωt) + bn sin(nωt) cos(ωt)

]
. (7.16)

Our next step will be to integrate both sides of this equation over one period of oscillation from t = 0 to
t = T :

1

T

∫ T

0

f(t) cos(mωt)dt =
1

T

∞∑

n=0

[
an

∫ ∞

0

cos(nωt) cos(mωt)dt+ bn

∫ ∞

0

sin(nωt) cos(ωt)dt

]
. (7.17)

The right-hand side of this equation involves an infinite sum of integrals. However, nearly all of the integrals
in this sum are zero because cos(mωt) and sin(nωt) are orthogonal functions on the interval 0 ≤ t ≤ T .
Indeed, Eq. (7.8) tells us that the second term on the right side of this equation vanishes for all values of n
in the sum. Moreover, Eq. (7.8) tells us that the first term vanishes for every term in the sum except one:
the term where n = m. Thus, for m 6= 0 we have

1

T

∫ T

0

f(t) cos(mωt)dt =
am
2

. (7.18)

Inverting this relation gives us an expression for the value of the coefficient am in the Fourier series for the
function f(x)

am =
2

T

∫ T

0

f(t) cos(mωt)dt , for m 6= 0 . (7.19)

Likewise, for the special case in in which m = 0, we get a similar expression from the orthogonality
relation in Eq. (7.8), but without the factor of two:

1

T

∫ T

0

f(t) cos(0)dt = a0 . (7.20)

This tells us that the Fourier coefficient a0 actually has an important physical interpretation. Since cos(0) =
1, the quantity on the left-hand side of this equation is just the average value 〈f〉 of the function f(t) over
one cycle of oscillation. Thus, we write

a0 = 〈f〉 =
1

T

∫ T

0

f(t)dt . (7.21)
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In hindsight, this result actually makes a great deal of sense. The a0 term in a Fourier series is a special term
because the the “cosine” term with which it’s associated is really just a constant. Indeed, since cos(0) = 1
and sin(0) = 0, we could just as well have written our Fourier series for f(x) in Eq. 7.2 in the alternative
form

f(t) = a0 +
∞∑

n=1

[
an cos(nωt) + bn sin(nωt)

]
. (7.22)

The average value of a constant over any interval is, of course, just the value of the constant. By contrast,
the average value of cos(nωt) or sin(mωt) over one cycle of oscillation is zero for any integer n 6= 0, so none
of the other terms in the Fourier series contribute to 〈f〉. In other words, the Fourier coefficient a0 can be
interpreted as an overall shift up or down of the waveform made up by the sum of all of the other, oscillating
terms in the Fourier series.3

We can play a similar trick to obtain the coefficients bn of the sine terms in Eq. (7.2). We simply multiply
both sides of this equation by sin(mωt)/T and integrate. The result (see Problem 2) for any value of m
(including m = 0) is

bm =
2

T

∫ T

0

f(t) sin(mωt)dt . (7.23)

Example: Square Wave

To get an idea of how this technique for finding the Fourier coefficients of a function works in practice, let’s
use it to determine the general form of an and bn for the square wave in our example from Sect. 7.2.

The first step is to write down the functional form for f(x) within the interval from 0 ≤ t < T .

f(t) =

{
f0 0 ≤ t ≤ T/2

−f0 T/2 < t < T
(7.24)

Moreover, it is clear from Fig. 7.1 that this square wave is an odd function of t. We can therefore anticipate
that our Fourier series for f(t) will consist exclusively of odd functions of t. Since cos(mωt) is an even
function, this means that that all of the coefficients am must vanish. Indeed, this turns out to be the case,
but let’s prove it. For the special case of the a0 coefficient, Eq. (7.21) tells us that

a0 =
f0
T

∫ T/2

0

dt− f0
T

∫ T

T/2

dt = 0 . (7.25)

This makes intuitive sense, since a0 is just the average of f(t) over a cycle, and we have f(t) = f0 for half a
cycle and f(t) = −f0 for the other half. Likewise, for the rest of the am, Eq. (7.19) gives us

am =
2f0
T

∫ T/2

0

cos(mωt)dt− 2f0
T

∫ T

T/2

cos(mωt)dt

=
2f0
T

[
sin(πm)

mω
− sin(0)

mω

]
− 2f0

T

[
sin(2πm)

mω
− sin(πm)

mω

]

= 0 , (7.26)

since sin(πm) = 0 for any integer m. So indeed, as we anticipated, the Fourier series for our square wave
consists entirely of sine rather than cosine terms.

3Another useful analogy is to think of the a0 coefficient as performing the same role that the “DC offset” function plays on
our waveform generators in lab.
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Now, let’s determine the coefficients bm of those sine terms. Plugging our expression for f(t) in Eq. (7.24)
into Eq. (7.23) gives us a general formula for bm:

bm =
2f0
T

∫ T/2

0

sin(mωt)dt− 2f0
T

∫ T

T/2

sin(mωt)dt

= −2f0
T

[
cos(πm)

mω
− cos(0)

mω

]
+

2f0
T

[
cos(2πm)

mω
− cos(πm)

mω

]

=
2f0
Tωm

[
2− 2 cos(πm)

]

=
2f0
πm

[
1− (−1)m

]
. (7.27)

We see that bm = 0 for even m, but that the bm for odd m are non-vanishing. Moreover, we also see that the
value of bm for the non-zero coefficients decreases with increasing m. This implies that the higher-frequency
terms in the Fourier series have a smaller impact on the overall waveform than the lower frequency terms
do. Indeed, we have already seen in Fig. (7.2) that the amplitudes of the individual sine terms in the Fourier
series — which is, after all, what the coefficients bm represent — are smaller for the higher-frequency modes.
In Fig. 7.4, we present a plot of bm vs. m for our square wave.

Figure 7.4: The values of the first few Fourier coefficients bm (blue dots) for a square wave. The coefficients
for even m vanish, while the coefficients for odd m lie along the curve b(m) = 4/(πm).

Finally, putting the results from Eq. (7.25), Eq. (7.26), and Eq. (7.27) together, we arrive at our final,
closed-form expression for the Fourier-series expansion of our square wave:

f(t) =
2f0
π

∞∑

n=0

1− (−1)n
n

sin(nωt) . (7.28)

Example: f(t) ∝ cos2(ωt)

As another example, let’s consider the Fourier expansion of the function

f(t) = f0 cos
2(ωt) . (7.29)

This function is even, so we know that the coefficients bm of the sine terms in the Fourier series must vanish.
Thus, we’ll focus on the coefficients a0 of the cosine terms.
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We being with the special case of a0. Plugging Eq. (7.29) into Eq. (7.21) gives us

a0 =
f0
T

∫ T

0

cos2(ωt)dt . (7.30)

We can evaluate the integral over cos2(ωt) using integration by parts. Doing so, we find that

a0 =
f0
2Tω

[
1 + cos(ωt) sin(ωt)

]∣∣∣
T

0
=

f0
2Tω

. (7.31)

The rest of the am can be evaluated using Eq. (7.19):

am =
2f0
T

∫ T

0

cos2(ωt) cos(mωt)dt

=
2f0
T

∫ T

0

1

2

[
cos(0) + cos(2ωt)

]
cos(mωt)dt

= f0

[
1

T

∫ T

0

cos(mωt)dt+
1

T

∫ T

0

cos(2ωt) cos(mωt)dt

]
, (7.32)

where in going from the first to the second line, we have used the identity

cosα cosβ =
1

2

[
cos(α− β) + cos(α + β)

]
. (7.33)

The first term in the square brackets on the right side of Eq. (7.32) is easy to evaluate. It’s just the average
of cos(mωt) over the interval 0 ≤ t ≤ T , which is zero for any integer m 6= 0. This leaves us with the second
term, which is a little less trivial. However, we can take advantage of the orthogonality relation in Eq. (7.8),
which tells us that this term also vanishes except in the special case where m = 2. In this case, we have

1

T

∫ T

0

cos(2ωt) cos(2ωt)dt =
1

2
, (7.34)

so the coefficient a2 is

a2 =
f0
2

. (7.35)

For all other values of m, both terms on the right-hand side of Eq. (7.32) vanish, and thus am vanishes as
well.

The punch line is that the Fourier series for the cosine-squared function in Eq. (7.29) turns out to be
remarkably simple. Indeed, only two of the coefficients in the entire infinite sum — the coefficients a0 and
a2 — are non-zero. Thus, the Fourier series for f(x) is just

f(x) = a0 + a2 cos(2ωt) =
f0
2

+
f0
2

cos(2ωt) . (7.36)

The individual contributions from these two non-vanishing terms, as well as their sum — i.e., the function
f(x) itself — are shown in Fig. fig:CosSqdPlotWithComponents.

As it turns out, “punch line” is actually an apt turn of phrase. In a sense, the joke is on us, because
we could actually have obtained this result in one line by applying the identity in Eq. (7.33) directly to our
original function:

f(x) = f0 cos
2(ωt) =

f0
2

[
cos(0) + cos(2ωt)

]
=

f0
2

+
f0
2

cos(2ωt) (7.37)

However, going through the exercise of determining the Fourier coefficients in this case was valuable for two
reasons. First, it is one of the few cases in which we have an independent way of checking the values of
those coefficients that we obtained using the method outlined in Sect. 7.4. Second, this case also provided an
example of how the orthogonality relations discussed in Sect. 7.3 can be used in order to evaluate integrals.
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Figure 7.5: The individual contributions (solid curves) from the two non-zero terms in the Fourier series for
the cosine-squared function in Eq. (7.29). The sum of these two terms (dashed curve), which corresponds to
the function f(x) itself, is also shown.

7.5 Fourier Series in Terms of Complex Exponentials

In Sect. 7.3, we saw that the set of complex exponentials einωt, where n is an integer and ω = 2π/T , are
orthogonal functions on the interval 0 ≤ t ≤ T . In this section, we will see how to construct Fourier series
using these complex exponentials instead of sines and cosines. The analogue of Eq. (7.2) is

f(t) =
∞∑

n=−∞
cne

inωt , (7.38)

where the cn are constant complex coefficients. Note that in contrast to the sum over sines and cosines in
Eq. (7.2), the sum here extends from −∞ to ∞ rather than from 0 to ∞.

In order to determine the Fourier coefficients cn for a given function f(x), we can employ essentially the
same trick we used in Sect. 7.4. We begin by multiplying both sides by e−imωt/T and then integrating:

1

T

∫ T

0

f(t)e−imωtdt =
1

T

∞∑

n=−∞
cn

∫ T

0

e−imωteinωtdt . (7.39)

Our orthogonality relation in Eq. (7.15) tells us that all of the terms in the sum on the right-hand side vanish
except for the term where m = n. For this lone surviving term, the value of the integral is 1, so we have

cm =
1

T

∫ T

0

f(t)e−imωtdt . (7.40)

It’s also worth mentioning that since the integrand in Eq. (7.40) is periodic with period T , it must be
true that ∫ T

T/2

f(t)e−imωtdt =

∫ 0

−T/2

f(t)e−imωtdt . (7.41)

Therefore, we could just as well have written Eq. (7.40) in terms of an integral from −T/2 to T/2, rather
than as an integral from 0 to T :

cm =
1

T

∫ T/2

−T/2

f(t)e−imωtdt . (7.42)

Writing the limits of integration in this more symmetric way is useful for many purposes. For example, as
we shall see in Sect. 7.7, it makes the behavior of the cn in the T →∞ limit more transparent.
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The advantage of working with Fourier series in this form is that it’s a lot easier and faster once you get
the hang of it. When we expand a function f(x) in terms of sine and cosine functions as we did in 7.4, we
have two different sets of coefficients an and bn to keep track of. Moreover, the coefficient a0 is a special
case which must be computed separately. By contrast, when we expand a function in terms of complex
exponentials, we only have one set of coefficients cn to keep track of, and the formula for c0 takes the same
form as the formula for every other coefficient. As you gain familiarity with complex numbers, you will find
yourself increasingly preferring to work with Fourier series in this latter form.

7.6 Solving Differential Equations with Fourier Series

Now that we’ve seen how Fourier decomposition works and how to find the Fourier coefficients for an arbitrary
function f(x), we’re ready to put these techniques to work in solving differential equations.

As discussed in Sect. 7.1, the principle of superposition tells us that if the inhomogeneous term f(x) in
a linear differential equation can be written as a sum of the form

f(t) = f1(x) + f2(x) + f3(x) + . . . , (7.43)

then there always exists a particular solution yp(x) of the form

yp(x) = yp1(x) + yp2(x) + yp3(x) + . . . , (7.44)

where ypn(x) is the solution to the corresponding differential equation with the full function f(x) replaced by
fn(x). We have now shown that essentially any arbitrary periodic function can be expressed as an Fourier
series — i.e., an infinite sum of sine and cosine terms. The principle of superposition therefore implies that
an inhomogeneous linear differential equation where f(x) is a periodic function has a particular solution of
the form

yp(x) =

∞∑

n=0

ypn(x) . (7.45)

Moreover, since the individual terms in the Fourier series have the form

fn(x) = Cn cos(λx) +Dn sin(λx) , (7.46)

where Cn and Dn are constants, the method of undetermined coefficients tells us that each of the ypn(x) has
the form

ypn(x) =

∞∑

n=0

[
An cos(nωt) +Bn sin(nωt)

]
. (7.47)

As an example of how this works, let’s consider the case of a damped, driven harmonic oscillator with a
driving force F (x) which takes the form of our square wave from Fig 7.1 with amplitude f0 = F0. We have
already computed the Fourier coefficients for this function in Sect. 7.4. Plugging our result from Eq. (7.28)
into the damped, driven harmonic-oscillator equation gives us

d2x

dt2
+ 2β

dx

dt
+ ω2

0x =
2F0ω

2
0

πk

∞∑

n=0

[1− (−1)n]
n

sin(nωt) . (7.48)

The inhomogeneous term on right-hand side of this equation is an infinite sum, each of the terms in which
has the form

fn(x) =
2F0ω

2
0 [1− (−1)n]
πnk

sin(nωt) . (7.49)

Thus, the principle of superposition tells us that there exists a particular solution to this equation of the
form

x(t) =

∞∑

n=0

xpn(t) , (7.50)
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Figure 7.6: Solutions xp(t) (normalized to the value of F0/k) to the damped, driven harmonic oscillator
equation with a square-wave driving force with amplitude F0. Each panel shows the solution for a different
value of ω In each case, we have taken ω0 = 1 and β = 0.2 (in arbitrary units) and plotted xp(t) on the
range 0 ≤ t ≤ 3T , where T is the period of oscillation. (Note that since the value of ω = 2π/T is different in
each panel, the range of t which corresponds to 0 ≤ t ≤ 3T is also different.) For comparison purposes, we
also include a curve in each panel corresponding to driving force itself (normalized to the value of F0).

where xpn(t) is the solution to the differential equation

d2xpn

dt2
+ 2β

dxpn

dt
+ ω2

0xpn =
2F0ω

2
0 [1− (−1)n]
πnk

sin(nωt) . (7.51)

The inhomogeneous term in Eq. (7.51) is just a sine wave, so the method of undetermined coefficients
tells us that our “guess” for each of the xpn(x) should be of the form

xpn(t) = An cos(nωt) +Bn sin(nωt) , (7.52)

where An and Bn are our undetermined coefficients. Determining the values of these coefficients is simply a
matter of plugging this guess back into Eq. (7.51) and solving the resulting system of equations. However,
we can take a shortcut. In Sect. 6.3, we already derived a particular solution in this way for a differential
equation in which the inhomogeneous term took the form of a cosine rather than a sine function. We know
that sin(nωt) = cos(nωt− π/2), so we can rewrite Eq. (7.51) in the form

d2xpn

dt2
+ 2β

dxpn

dt
+ ω2

0xpn =
2F0ω

2
0 [1− (−1)n]
πnk

cos(nωt− π/2) . (7.53)

This isn’t exactly the same equation we solved in Chapter 6 because the cosine term contains an additional
phase shift of −π/2. However, it’s not too hard to convince ourselves that the “guess” we should use when
applying the method of undetermined coefficients in this case is

xpn(t) = An cos(nωt− π/2) +Bn sin(nωt− π/2) . (7.54)

The phase shift doesn’t affect the way that the derivatives act on xpn(t), so this phase just “comes along for
the ride,” so to speak. As a result, we find that our solution for xpn(t) is identical to the result we derived in
Sect. 6.3, except that there’s an additional phase shift of −π/2 which turns the cosine function into a sine:

xpn(t) = An(ω) cos
[
nωt− δn(ω)− π/2

]

= An(ω) sin
[
nωt− δn(ω)

]
, (7.55)
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where the amplitude An(ω) and phase δn(ω) are given by the familiar expressions from Chapter 6 with the
replacements

ω → nω , F0 →
2F0[1− (−1)n]

πnk
. (7.56)

In other words, we have

An(ω) =
ω2
0√

(ω2
0 − n2ω2)2 + 4β2n2ω2

2F0[1− (−1)n]
πnk

δn(ω) = arctan

(
2βnω

ω2
0 − n2ω2

)
. (7.57)

The solution xp(t) to the full differential equation in Eq. (7.48) is just the sum of these individual contribu-
tions:

xp(t) =

∞∑

n=0

An(ω) sin
[
nωt− δn(ω)

]
. (7.58)

In Fig. 7.6, we show what the solution in Eq. (7.58) looks like for a variety of different values of the
driving frequency ω ranging from ω ≪ ω0 (upper left) to ω ≫ ω0 (lower right). We see that these curves
exhibit a wide variety of possible behaviors, depending on the relationship between ω and ω0.

7.7 Fourier Transforms

We have already seen that Fourier decomposition provides us with an incredibly powerful tool for solving
linear differential equations. Indeed, this technique — in conjunction with the principle of superposition —
gives us the tools to derive a particular solution for essentially any such equation in which the inhomogeneous
function f(x) is periodic in t. However, it turns out there is also a procedure for decomposing a function
f(x) which is not periodic. The resulting expansion is called the Fourier transform of f(x).

Figure 7.7: A single, non-repeating square pulse with height f0 and width 2a.

In order to understand how Fourier transforms work, it’s again best to start with a concrete example.
In particular, let us consider the function f(x) illustrated in Fig. 7.7. This function consists of a single,
non-repeating square pulse of height f0 and width 2a. In other words, it’s a piecewise function of the form

f(x) =






0 t < −a
f0 −a ≤ t ≤ a

0 t > a .

(7.59)

This function is clearly not periodic in t, so it cannot be represented as a Fourier series.

Now let us consider the function shown in the top panel of Fig. 7.10, which consists of a train of such
pulses with period T . This function is periodic, so we can represent it as a Fourier series. Indeed, we already
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know from Problem 4 that the Fourier series (in complex-exponential form) for this function is

f(t) =

∞∑

n=0

cne
iωnt , cn =

2a

T
f0

sin(ωna)

ωna
, (7.60)

where ωn is just the frequency of the corresponding term:

ωn ≡ nω =
2πn

T
. (7.61)

This function is obviously not the same as the square-wave pulse from Eq. (7.59). Nevertheless, it is true
that these two functions do coincide at times |t| < T − a. This means that if we want a pulse train that
coincides with this square-wave pulse over a larger range of t, all we need to do increase the period T while
keeping the width a of the pulses fixed, as illustrated in the bottom panel of Fig. 7.8.

Figure 7.8: A pulse train with period T (top panel) consisting of pulses with height f0 and width 2a. By
taking the limit as T → ∞ while holding a fixed (as illustrated schematically in the bottom panel), we
recover the single pulse shown in Fig. 7.7.

Let’s now consider what happens to the Fourier series in Eq. (7.60) as we increase T while holding a
fixed. First of all, Eq. (7.61) tells us that each ωn decreases with increasing T . However, we should keep in
mind that there are an infinite number of modes in the Fourier series, so what this really means is that the
interval

∆ω ≡ ωn+1 − ωn =
2π

T
(7.62)

between the frequencies of any two successive modes in the Fourier series decreases. Another way of saying
this is that within a fixed frequency range — say, for example, from 1 s−1 to 2 s−1 — the number of
frequencies ωn within that frequency range which appear in our Fourier series for f(x) increases.

At the same time, however, increasing T also affect the Fourier coefficients cn. We can get a better sense
of exactly how these coefficients scale with T by using Eq. (7.61) in order to rewrite ωn in terms of T and
thereby make the T -dependence of the cn more explicit:

cn =
2af0
T

sin(2πna/T )

(2πna/T )
. (7.63)
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Now let’s consider what happens to this expression when T becomes large. For fixed values of a and n, the
quantity 2πna/T becomes small. We have already proved in Chapter 3 of these notes that

lim
x→0

sin(x)

x
= 1 , (7.64)

so for very large T , the expression in Eq. (7.63) becomes approximately cn ≈ 2af0/T . This means that if
we multiply the coefficient cn by T/2π,4 the resulting quantity

Tcn
2π

=
af0
π

sin(ωna)

ωna
(7.65)

does not tend toward zero when T is large. In fact, if we view Eq. (7.65) as a function of the variable ωn,
we see that the shape of this function is independent of T . What changes as T is increased, as discussed
above, is the number of values for ωn within a given frequency range at which this function is “sampled” —
i.e., the number of values for ωn which actually correspond to modes in the Fourier series. This behavior is
illustrated in the different panels of Fig. 7.9. In each panel, the dashed curve corresponds to the quantitiy
in Eq. 7.65, plotted as a function of ωn. The blue dots in each panel correspond to the the actual values
of ωn for the Fourier modes. As T increases, the dashed curve remains the same, but the density of points
increases.

Figure 7.9: The values (blue dots) of the rescaled Fourier coefficients cnT/2π for the pulse train shown in
Fig. 7.8, normalized to the value of af0/π. The four different panels shown here correspond to different
values for the of T . For T = 4a, as shown in the top left panel, the interval ∆ω between the frequencies of
any two successive modes is quite large. As T increases, this interval decreases, which means that more and
more values of ωn are being “sampled” in the Fourier sum. In the T → ∞ limit (illustrated in the bottom
right panel), the ∆ω → 0 and the spectrum of ωn becomes a continuum.

4The factor of 2π that we have included here is merely a particular convention that we’ve adopted in order to make our
subsequent calculations cleaner. The important thing is that we’re multiplying by T in order to cancel out the factor of 1/T in
cn.
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Finally, let us consider what happens in the limit in which T is not merely large, but infinite. In this limit,
the distance between the pulses in our pulse train becomes infinite, and we recover the single square pulse
from Fig. 7.7. Let’s consider what happens to the the frequencies ωn and amplitudes cn of the individual
Fourier modes in this limit. First of all, the interval ∆ω in Eq. (7.62) goes to zero as T → ∞. This means
that the spectrum of frequencies included in the Fourier series becomes continuous. The Fourier coefficients
cn also go to zero in this limit, but they do so in such a way that the curve of Tcn/2π vs. ωn in Eq. (7.65)
remains unchanged. The result is that Tcn/2π really becomes a continuous function of the frequency in this
limit, as shown in the bottom right panel of Fig. 7.9. This continuous function, which we will call F (ω) is
given by

F (ω) ≡ lim
T→∞

Tcn
2π

=
af0
π

sin(ωa)

ωa
. (7.66)

where we have replaced the symbol ωn with the symbol ω because the spectrum of frequencies becomes
continuous in the T →∞ limit. The quantity in Eq. (7.66) is called the Fourier transform of our square
wave pulse Eq. (7.59). Physically, the Fourier transform represents the spectrum of amplitudes for the
continuous spectrum of Fourier modes that make up our square-wave pulse.

The notion of a Fourier transform F (ω) for a non-periodic function f(t) is a general concept that extends
far beyond our square-wave pulse example. Indeed, we can likewise define the Fourier transform for any
well-behaved5 function f(t) in a similar manner. Since Eq. 7.42 gives us a general expression for the Fourier
coefficients cn for any such function, we have

F (ω) = lim
T→∞

T

2π
cn

= lim
T→∞

T

2π

1

T

∫ T/2

−T/2

f(t)e−iωntdt

=
1

2π

∫ ∞

−∞
f(t)e−iωtdt , (7.67)

where once again we have replaced the symbol ωn with the symbol ω because the spectrum of frequencies
becomes continuous in the T →∞ limit.

Finally, it is also possible to invert the relation in Eq. (7.67) and obtain a formula for f(x) in terms of
F (ω). As with the Fourier transform itself, the simplest way to derive this formula is to begin with the
corresponding relation for a periodic function and take the T → ∞ limit. In this case, the relation is the
expression for the Fourier series itself in Eq. (7.38), which we can write as

f(t) =

∞∑

n=−∞
cne

iωnt

=

∞∑

n=−∞

Tcn
2π

eiωnt
2π

T

=

∞∑

n=−∞

Tcn
2π

eiωnt∆ω (7.68)

Now it’s a little more clear what happens to this expression when we take the T → ∞ limit. The discrete
set of frequencies ωn becomes a continuous variable ω, the quantity Tcn/2π becomes the Fourier transform
F (ω), and the sum weighted by the spacing ∆Ω between frequencies becomes an integral over dω:

f(t) = lim
T→∞

∞∑

n=−∞

Tcn
2π

eiωnt∆ω

=

∫ ∞

−∞
F (ω)eiωtdω . (7.69)

5In this context, “well-behaved” means that the function satisfies a set of criteria which look like the Dirichlet conditions in
Sect. 7.2, but on the interval −∞ to ∞ rather than 0 to T .
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The “Fourier integral” in Eq. (7.69) is called the inverse Fourier transform. It is the analogue of the
Fourier series Eq. (7.38) for a non-periodic function. In other words, Eq. (7.69) tells us that it’s actually still
possible for us to write a “Fourier series” for such a function — provided that we are prepared to include
a continuum of frequencies. Moreover, this equation makes the physical meaning of the Fourier transform
F (ω) very clear. Indeed, it represents the spectrum of amplitudes for the continuous spectrum of Fourier
modes that make up our square-wave pulse. Likewise, the Fourier transform in Eq. (7.67) can be seen as the
analog6 of the formula for the Fourier coefficients cn in Eq. (7.42).

Example: Inverse Fourier Transform of a Square Pulse

As an example of how Eq. (7.69) can be used to reconstruct a function f(t) from its Fourier transform,
let’s use it to obtain f(t) from the Fourier transform of our square-wave pulse from Fig. 7.7. Plugging the
expression for F (ω) in Eq. (7.66) into Eq. (7.69) gives us

f(t) =

∫ ∞

−∞

af0
π

sin(ωa)

ωa
eiωtdω . (7.70)

We can simplify things a bit using Euler’s formula:

f(t) =
af0
π

∫ ∞

−∞

sin(ωa)

ωa
eiωtdω

=
f0
π

∫ ∞

−∞

1

2iω

[
eiω(t+a) − eiω(t−a)

]
dω

=
f0
π

∫ ∞

−∞

{
cos[ω(t+ a)] + i sin[ω(t+ a)]

2iω
− cos[ω(t− a)] + i sin[ω(t− a)]

2iω

}
dω . (7.71)

This integral may not look much simpler, but its now in a form that’s more straightforward to evaluate.
First of all, we know that cos[ω(t±a)] is an even function of ω, so the ratio cos[ω(t±a)]/ω is an odd function.
This implies that the integral of each of the cosine terms in Eq. (7.71) from −∞ to ∞ is zero. This just
leaves the sine terms:

f(t) =
f0
2π

∫ ∞

−∞

{
sin[ω(t+ a)]

ω
− sin[ω(t− a)]

ω

}
dω . (7.72)

We can evaluate the integral of each of the terms in the integrand separately by performing an appropriate
change of variables. Using u = ω(t+ a) for the first term term and u = ω(t− a) for the second term, we find
that

f(t) =
f0
2π

{∫ ∞

−∞

sin[ω(t+ a)]

ω
dω −

∫ ∞

−∞

sin[ω(t− a)]

ω
dω

}

=
f0
2π

{
sign(t+ a)

∫ ∞

−∞

sin(u)

u
du − sign(t− a)

∫ ∞

−∞

sin[u)]

u
du

}
. (7.73)

The reason that the sign(t ± a) coefficient arises in each term is that the u-substitution flips the limits of
integration when t± a is negative, but not when it’s positive. When it’s negative, you pick up a minus sign
when you put the limits of integration back in the correct order. Each of the integrals in Eq. (7.73) evaluates
to π, so we find that

f(t) =
f0
2

[
sign(t+ a)− sign(t− a)

]
. (7.74)

The value of the term in square brackets in Eq. (7.74) depends on the relationship between t and a.
For t < −a, we have sign(t + a) = sign(t − a) = −1, so f(t) = 0. Likewise, when t > a, we have
sign(t + a) = sign(t − a) = +1, so again f(t) = 0. However, for −a < t < a, we have sign(t + a) = +1
and sign(t − a) = −1, which means that f(t) = f0. Collecting these results together, we obtain our final
piecewise expression for f(t):

f(x) =





0 t < −a
f0 −a < t < a

0 t > a .

(7.75)

6No pun intended.
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This is nothing but our original square-wave-pulse function from Eq. (7.59)!7 Indeed, when we performing
the inverse Fourier transform of F (ω), we recover f(t), as expected.

Problems

Figure 7.10: A pulse train with an overall period T , which consists of a series of rectangular pulses of width
2a.

Figure 7.11: A sawtooth wave with amplitude f0 and period T .

1. Explicitly derive the orthogonality relations for in Eqs. (7.9) and (7.10).

2. Verify that the the expression in Eq. (7.23) gives the correct result for the Fourier coefficients bn.

3. Show the following about the complex Fourier coefficients cn appearing in Eq. (7.38).

(a) For an even function f(t), show that the coefficients satisfy c−n = cn.

(b) For an odd function f(t), show that the coefficients satisfy c−n = −cn.
(c) For a real function f(t), show that the coefficients satisfy c−n = c∗n.

7There is one minor technical discrepancy here, but it’s an expected one. It turns out that at a value of t where f(t) is
discontinuous, the Fourier transform converges to the midpoint between the values of f(t) on either side of the discontinuity
just like a regular Fourier series does [see Eq. (7.4)]. You can verify for yourself that f(t) = f0/2 for t = ±a for our square-wave
pulse.
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Figure 7.12: A triangle wave with amplitude f0 and period T .

(d) For an imaginary function f(t), show that the coefficients satisfy c−n = −c∗n.

4. Find the Fourier series, in complex-exponential form, for the pulse train pictured in Fig. 7.10. Check
that any applicable relations among the cn that you derived in Problem 3 are satisfied in this case.

5. Consider a sawtooth wave with amplitude f0 and period T , as shown in Fig. 7.11.

(a) Determine the Fourier series for this function in closed form.

(b) Use Mathematica to make a single plot that shows both the original sawtooth wave and the partial
sum including the first three non-vanishing terms in the Fourier Series.

6. Consider a triangle wave with amplitude f0 and period T , as shown in Fig. 7.12,

(a) Determine the Fourier series for this function in closed form.

(b) Use Mathematica to make a single plot that shows both the original triangle wave and the partial
sum including the first three non-vanishing terms in the Fourier Series.



Chapter 8

Impulses and Green’s Functions

• The physics: Impulsive forces, driven oscillators with generic driving terms

• The math: The Dirac delta function, the Heaviside theta function, the method of Green’s functions.

8.1 Introduction and Motivation

Over the course of the last two chapters of these notes, we have developed a variety of increasingly sophisti-
cated techniques for solving inhomogeneous linear differential equations. In Chapter 6, we were introduced
to the principle of superposition. This principle states that whenever the inhomogeneous term takes the
form of a direct sum — i.e., whenever f(x) = f1(x)+ f2(x)+ f3(x)+ . . . — there exists a particular solution
of the form yp(x) = yp1(x) + yp2(x) + yp3(x) + . . ., where ypi(x) is the solution to the corresponding differ-
ential equation with fi(x) in place of f(x). In Chapter 7, we saw that it was possible to express nearly any
periodic function as a direct sum. Specifically, we saw that it was possible to express such a function as an
infinite sum of sine and cosine functions (or, alternatively, complex exponentials) with different frequencies
— a construction known as a Fourier series. Furthermore, we even saw that non-periodic functions could be
represented as a “Fourier series” of sorts — provided we were willing to include a continuous spectrum of
frequencies in the sum. Thus, Fourier decomposition provided us with a method of solving essentially any
inhomogeneous linear differential equation of up to second order.

In this chapter, we will examine another, equally powerful technique for decomposing an arbitrary function
into a set of individual functions for which the corresponding differential equation is more tractable. This
technique is called the method of Green’s functions. Instead of decomposing functions into sine and cosine
functions, we decompose them into a continuous spectrum of infinitely thin, infinitely high spikes called Dirac
delta functions. As with Fourier analysis, the method of Green’s functions provides us with a tool which
can be used to evaluate the particular solution to nearly any inhomogeneous linear differential equation.
Green’s functions are likewise ubiquitous in physics: they are used extensively in electromagnetic theory,
fluid dynamics, astrophysics, particle physics, and condensed-matter theory.

8.2 The Dirac Delta Function

The Dirac delta function (sometimes just referred to as the delta function), usually written δ(x), is
a generalized mathematical function1 whose value is defined to be infinite at precisely x = 0 but zero
everywhere else:

δ(x) ≡
{
0 x 6= 0

∞ x = 0
. (8.1)

1The Dirac delta function is not truly a function in the precise, technical sense, but rather what mathematicians call a
generalized function or distribution. However, this distinction is not particularly important for any of the physics applications
we’ll be exploring in this chapter.
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You can think of the Dirac delta function as an infinitely high, infinitely narrow spike located at the origin, as
illustrated in Fig. 8.1. There is one more crucially important property that defines the Dirac delta function,
which is that the area under the “spike” is defined to be 1. In other words, the integral of δ(x) over even an
infinitesimally small range −ǫ ≤ x ≤ ǫ centered around the origin is 1:

∫ ǫ

−ǫ

δ(x)dx = 1 . (8.2)

However, since δ(x) evaluates to zero everywhere else except at the origin, the contribution to the integral
from all other values of x is zero. It therefore follows that if the interval over which we’re integrating δ(x)
includes the origin, the value of the integral is exactly 1; if not, the value of the integral is zero:

∫ b

a

δ(x)dx =

{
1 a ≤ 0 ≤ b

0 otherwise .
(8.3)

For example, consider the three points x1, x2, and x3 indicated on the x-axis in Fig. 8.1. If we were to
integrate from x1 to x3 or from x2 to x3, we would get

∫ x3

x1

δ(x)dx =

∫ x3

x2

δ(x)dx = 1 (8.4)

whereas if we were to integrate from x1 to x2, we would get
∫ x2

x1

δ(x)dx = 0 , (8.5)

because this interval doesn’t include the origin.

Figure 8.1: Illustration of the Dirac Delta function δ(x). The “function” consists of an infinitely high spike
at x = 0, but evaluates to zero for all other values of x.

Now that we’ve been introduced to the Dirac Delta function, let’s see why it’s useful. In particular,
let’s consider what happens when we integrate the product of δ(x) with some other function f(x) over some
interval: ∫ b

a

f(x)δ(x)dx . (8.6)

The delta function is zero everywhere except at x = 0, so the only non-vanishing contribution to this integral
comes from the single point x = 0. At this point f(x) evaluates to some particular value f(0). Since the
only contribution to the integral comes from this point, we can pull f(0) outside the integral. We therefore
find that ∫ b

a

δ(x)dx = f(0)

∫ b

a

δ(x)dx =

{
f(0) a ≤ 0 ≤ b

0 otherwise .
(8.7)
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In other words, we see that the delta function serves to “pick out” the value of the function f(x) at the point
x = 0 when we integrate over an interval which includes this point. It’s also straightforward to generalize
Eq. (8.7) and “pick out” the value of f(x) at any other value of x. Since δ(x) is only non-zero at the point
x = 0, the function δ(x− c) will only be non-zero at the point x = c. Thus, we have

∫ b

a

f(x)δ(x − c)dx =

{
f(c) a ≤ c ≤ b

0 otherwise .
(8.8)

We can also use what we know about the fundamental properties of Delta functions in order to evaluate
integrals in which the argument of the delta function is a more complicated expression than just x or x− c.
For example, let’s say we wanted to evaluate the integral

∫ 2π

−2π

cos(4x)δ(−2x)dx . (8.9)

How would we do this? The easiest way is to perform a change of variables to rewrite our expression in the
form appearing in Eq. (8.7). In particular, if we define the variable u = −2x, we have

du =
du

dx
dx = − 2dx , (8.10)

and our integral becomes
∫ 2π

−2π

cos(4x)δ(−2x)dx =

∫ −4π

4π

cos(−2u)δ(u)
(
−1

2
du

)

=
1

2

∫ 4π

−4π

cos(2u)δ(u)du

=
1

2
cos(0)

=
1

2
. (8.11)

It’s important to note that the minus sign that we picked up from changing the measure of integration from
dx to du was canceled by our switching the limits of integration in the second line of Eq. (8.11). However, if
the argument of the delta function in Eq. (8.9) had been 2x instead of −2x, we wouldn’t have had to switch
the limits of integration and would have ended up with the same result.

It’s not too difficult to generalize from this example and write down a formula for the integral of the
product of f(x) with the delta function δ(cx), where c is a constant. In particular, we can perform a similar
change of variables u = cx to get

∫ b

a

f(x)δ(cx)dx =

∫ b

a

f
(u
c

) 1

|c|δ(u)du . (8.12)

The absolute value of c appears in this expression rather than c because switching the limits of integration
cancels the minus sign we pick up from changing the measure of integration from dx to du, as discussed
above. Finally, since the variable u is just a dummy variable, we can rename it x and write

∫ b

a

f(x)δ(cx)dx =

∫ b

a

f
(x
c

) 1

|c|δ(x)du

=

∫ b

a

f(x)
1

|c|δ(x)dx , (8.13)

where in going from the first to the second line, we have used the fact that x = 0 wherever x/c = 0.
Comparing this expression with our original expression on the left-hand side of Eq. (8.12), we see that

δ(cx) =
1

|c|δ(x) . (8.14)
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8.3 Impulses

There are a lot of situations in physics in which a force acts for only a very short duration but causes a
dramatic change in the velocity of some object. Some examples include the force that the floor exerts on a
basketball when it bounces, the force between two colliding objects, and the force you exert when you push
someone on a swing set. It’s often useful to model a force like this as an impulse — i.e., a force which acts
for an infinitesimal amount of time but which is infinite so that it can nevertheless produce a change in the
motion of the object on which is acts. Such impulsive forces can be modeled by a Dirac delta function

F (t) = Jδ(t− t∗) , (8.15)

where t∗ is the time at which the force acts, and where J is a constant with dimensions [J ] = kgm/s. The
integral of this impulse over any interval ti ≤ t ≤ tf which includes t∗ is

∫ tf

ti

F (t)dt = J

∫ tf

ti

δ(t− t∗)dt = J . (8.16)

Now let’s see what happens when an impulse acts within a physical system and alters the trajectories of
the objects within that system. In particular, let’s once again consider a damped, driven harmonic oscillator
which consists of a block attached to a spring and ask what the solutions look like when the driving force
which acts on the block takes the form of an impulse. Our equation of motion in this case is

dx2

dt2
+ 2β

dx

dt
+ ω2

0x =
F (t)

m
=

J

m
δ(t− t∗) . (8.17)

For simplicity, we’ll focus on the case in which β < ω0 and the oscillator is underdamped. However, the
overdamped and critically-damped cases can be analyzed in a completely analogous way. At times t < t∗,
the delta function on the right-hand side of Eq. (8.17) evaluates to zero, so Eq. (8.17) is just

dx2

dt2
+ 2β

dx

dt
+ ω2

0x = 0 . (8.18)

This is just the equation of motion for a damped harmonic oscillator, so we already know that the solutions
are

x−(t) = e−βt
[
A− cos(ω1t) +B− sin(ω1t)

]
, (8.19)

where the subscripts on the coefficients A1 and B− indicate that these are the solutions for t < t∗ — i.e., at
times before the impulse acts on the system. Likewise, at times t > t∗, the delta function also evaluates to
zero, so the solutions have exactly the same form

x+(t) = e−βt
[
A+ cos(ω1t) +B+ sin(ω1t)

]
. (8.20)

Now comes the point where we need to take into account the effect of the impulse. Since the time interval
during which this impulse is “turned on” is infinitesimally short, it doesn’t correspond to an additional piece
of our piecewise soluion for x(t); rather, it corresponds to a modification of the boundary conditions which
join x−(t) to x+(t) at t∗. The boundary condition for the position of the block is straightforward to evaluate.
Clearly, the block cannot instantaneously change its position, no matter how strong the impulse might be,
so we must have

x+(t∗) = x−(t∗) (8.21)

The boundary condition for the velocity v = dx/dt is a bit trickier to evaluate because the the velocity is not
continuous at t∗. Rather, the impulsive force acts to produce an instantaneous change in the momentum p
— and hence the velocity — of the block. Thus, the impulse leads to a discontinuity

∆v ≡ v+(t∗)− v−(t∗) (8.22)

in the velocity of the block at t = t∗. In order to derive this discontinuity, we integrate both sides Eq. (8.17)
over an infinitesimal region centered around t∗ = 0:

∫ ǫ

−ǫ

[
dx2

dt2
+ 2β

dx

dt
+ ω2

0x

]
dt =

∫ ǫ

−ǫ

J

m
δ(t− t∗)dt . (8.23)
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Using the fundamental theorem of calculus to evaluate the first two terms on the left-hand side of this
equation and using Eq (8.8) to evaluate the term on the right-hand side, we find that

dx

dt

∣∣∣∣
ǫ

−ǫ

+ 2βx

∣∣∣∣
ǫ

−ǫ

+ ω2
0

∫ ǫ

−ǫ

xdt =
J

m
. (8.24)

The first term on the left-hand side of this equation represents the difference in velocity across the discon-
tinuity at t = t∗. By contrast, the second two terms, on this side of the equation vanish in the ǫ → 0 limit
because, as we’ve already discussed, the position x(t) itself is continuous at t∗. Thus, if we take the ǫ → 0
limit of Eq. (8.24), we find that the discontinuity in the velocity of the block at t∗ is

∆v =
dx

dt

∣∣∣∣
ǫ

−ǫ

=
J

m
. (8.25)

Figure 8.2: The pieceiwse solution x(t) for an underdamped harmonic oscillator which is disturbed from its
equilibrium state by an impulse F (t) = Jδ(t) at t = 0, normalized to J/mω1. The trajectory shown here
corresponds to the parameter choices ω0 = 1 and β = 0.2.

Now that we know the discontinuity ∆v in the velocity at t∗, we’re ready to apply the boundary conditions
in Eqs. (8.21) and (8.22) and derive our piecewise solution for x(t). To make things simpler, we’ll choose
our time coordinate so that t∗ = 0. Moreover, let’s focus on the case in which the block is initially at rest at
at its equilibrium point at some initial t0 < 0 and is only later set into motion by the action of the impulse.
In this case, the boundary conditions for x−(t) at t = t0 are x−(t0) = 0 and v−(t0) = 0. This gives us the
trivial solution

x−(t) = 0 (8.26)

for times t < 0. However, at t = 0, the impulse acts and causes an instantaneous jump in velocity given by
Eq. (8.25). As a result, we have

x+(0) = 0 , v+(0) = ∆v =
J

m
. (8.27)

We know the relationship between the initial position and velocity values x+(0) and v+(0) and the coefficients
A+ and B+ in Eq. (8.20) — indeed, we already derived this relationship in Chapter 5 of these notes. Plugging
in the values from Eq. (8.27) gives us

A+ = x+(0) = 0 , B+ =
v+(0) + βx+(0)

ω1
=

J

mω1
. (8.28)
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Thus, we find that the solution for t > 0 takes the form

x+(t) = e−βt J

mω1
sin(ω1t) . (8.29)

By stitching the individual pieces in Eqs. (8.26) and (8.29) together, we finally arrive at our piecewise
solution for x(t):

x(t) =

{
0 t < 0

e−βt J
mω1

sin(ω1t) t ≥ 0
. (8.30)

We can write this expression in a slightly more compact form by defining the function

Θ(t) ≡






0 t < 0
1
2 t = 0

1 t > 0

(8.31)

This function is called the Heaviside theta function, and it allows us to write Eq. (8.30) in the form

x(t) = e−βt J

mω1
sin(ω1t)Θ(t) . (8.32)

In Fig. 8.2, we show what this solution (normalized to the value of the quantity J/mω1) looks like as a
function of time for the choice of parameters ω0 = 1 and β = 2. For t0 < t < 0, the block simply sits at
equilibrium. At t = 0, the impulse endows the block with a momentum ∆p = J and it starts undergoing
damped oscillations around the equilibrium point.

It’s not difficult to generalize our result in Eq. (8.32) to the case of an impulse which acts at a time
t∗ 6= 0. You can easily verify (see Problem 3) for yourself that the corresponding solution for general t∗ is

x(t) = e−β(t−t∗)
J

mω1
sin[ω1(t− t∗)]Θ(t− t∗) . (8.33)

8.4 Green’s Functions

In Sect. 8.3, we saw how to solve linear differential equations in which the inhomogeneous term takes the
form of a delta function. As you might imagine, it’s not difficult to generalize this to the case in which
multiple different impulses act on the system. Let’s say, for example, that in the example from the previous
section, we had given our block a “push” not merely once, but several times in succession. In other words,
let’s say that the force F (t) applied to the block had consisted not of a single impulse, but rather of N
independent impulses, each of which acts at a different time tn and has its own particular strength Jn, where
the index n = 1, 2, . . . , N labels the impulse in chronological order. In this case, F (t) takes the form of a
sum of Dirac delta functions representing these individual impulses

F (t) =

N∑

n=1

Jnδ(t− tn) . (8.34)

What would the particular solution to such a differential equation look like? In order to answer this
question, we once again turn to the principle of superposition for guidance. This principle tells us that there
exists particular solution to the corresponding differential equation of the form

xp(t) =
N∑

n=1

xpn(t) , (8.35)

where xpn(t) is the solution to the corresponding differential equation with the full inhomogeneous term
F (t) replaced by the single delta function Jnδ(t − tn). Each of these individual equations has exactly the
same form as Eq. (8.17), so we know that the corresponding solution xpn(t) to each equation must likewise
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have the same form as Eq. (8.33). Thus, the solution to the equation with the full inhomogeneous term in
Eq. 8.34 is

xp(t) =

N∑

n=0

e−β(t−tn)
Jn
mω1

sin[ω1(t− tn)]Θ(t− tn) . (8.36)

Figure 8.3: Illustration of a function f(x) which consists of a sum of multiple different delta functions, as in
Eq. (8.37)

We have thus far been speaking about summing over delta functions in the context of one particular
physics example involving impulsive forces. However, these same principles apply more broadly to other
mathematically analogous contexts as well. In particular, whenever we have an inhomogeneous linear dif-
ferential equation in which the inhomogeneous term can be written as a sum of delta functions — i.e., in
which

f(x) =

N∑

n=1

fnδ(x− xn) , (8.37)

we can use the same general procedure that we used in Sect. 8.3 in order to determine the solution in a fairly
straightforward manner using the principle of superposition.

All well and good, but now we’re going to take this one step further. In particular, let us consider the
case in which our function f(x) is not merely a sum of some finite number of impulses weighted by some set
of coefficients fn, but rather a “sum” — i.e., an integral — over a continuous spectrum of delta functions
f(x′)δ(x−x′) weighted by a set of coefficients f(x′), where the location of the delta-function spike is labeled
by the continuous variable x′. In other words, let us consider functions of the form

f(x) =

∫ ∞

−∞
f(x′)δ(x− x′)dx′ , (8.38)

I want to stress that mathematically we’ve done nothing new or daring here. In fact, this equation is really
just a restatement of Eq. (8.8) with x′ as the integration variable and x = c.2 Thus, any function f(x) can
be written this way.

Conceptually, however, this equation is actually quite profound. It says that any function f(x) can be
decomposed into continuum of Dirac delta functions δ(x−x′) labeled by the continuous variable x′, each with
a coefficient f(x′). This decomposition is illustrated in Fig. 8.4. It’s important to remember that each delta
function in this decomposition is still infinitely high — it’s the act of integrating over these delta functions
that gives us a finite value for f(x) at each value of x. You can think of this decomposition as being similar
to the Fourier transform F (ω) we saw in Chapter 7 in that it’s a way of representing a function in terms of
a continuum of constituent functions labeled by some continuous variable. For the Fourier transform, that

2You’ve already shown in your homework that δ(x− c) = δ(c − x), so the minus sign in the argument of the delta function
relative to Eq. (8.8) doesn’t matter.
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variable is the frequency ω of the Fourier mode; for this delta-function decomposition, it’s the location x′

of the delta-function spike. The difference is that we’re decomposing our function into a set of such spikes
instead of sine waves or complex exponentials.

What is the advantage of expressing a function in terms of a continuum of Dirac delta functions? Once
again, just as with Fourier transforms, the answer has everything to do with the principle of superposition.
Let’s say, for example, that we we trying to solve an inhomogeneous linear equation of the form

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = f(x) , (8.39)

where the inhomogeneous term f(x) doesn’t have one of the forms for which we can easily guess the solution
and use the method of undetermined coefficients. If we use Eq. (8.38) to re-express f(x) in the form

d2y

dx2
+ P (x)

dy

dx
+Q(x)y =

∫ ∞

−∞
f(x′)δ(x − x′)dx′ , (8.40)

we see that the right-hand side takes the form of a direct sum — a sum over a continuous variable x′, mind
you (i.e., an integral), but a sum nonetheless! This means that the principle of superposition applies, and it
tells us that there exists a particular solution yp(x) to this equation which takes the form of a sum — or in
this case an integral, since x′ is continuous — over the particular solutions to the corresponding differential
equations with f(x) replaced a single delta-function term. We have already seen that differential equations of
this sort are quite tractable — indeed, we just solved one in Sect. 8.15. Once we’ve obtained the solution to
this delta-function equation for an arbitrary value of x′ — we’ll call this solution Yp(x;x

′), since it depends
on both x and x′ — obtaining the solution to the full differential equation in Eq. (8.39) is simply a matter
of integrating over x′:

yp(x) =

∫ ∞

−∞
Yp(x;x

′)dx′ . (8.41)

Figure 8.4: Illustration of how a function f(x) is decomposed into a continuum of infinitely high delta-
function spikes f(x′)δ(x − x′), weighted by the value of the function at each point. The integral over this
continuum of delta functions returns a finite value for f(x) at every value of x.

This strategy for solving inhomogeneous linear differential equations by decomposing the inhomogeneous
term f(x) into a continuum of delta functions is the basis for the method of Green’s functions. The Green’s

function G(x;x′) for a a differential equation is just the solution to the corresponding equation with f(x)
replaced by a single, unweighted delta function. For example, for a generic second-order linear equation of
the form given in Eq. (8.39), G(x;x′) is a solution to the equation

d2G(x;x′)

dx2
+ P (x)

dG(x;x′)

dx
+Q(x)G(x;x′) = δ(x− x′) (8.42)
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The Green’s function is useful because no matter what form f(x) happens to take, the solution Yp(x;x
′) for

each value of x′ is just the Green’s function, weighted by the value of the function f(x) at the point x = x′

where the corresponding delta function δ(x − x′) is non-zero:

Yp(x;x
′) = f(x′)G(x;x′) . (8.43)

The particular solution yp(x) to the full differential equation can therefore be written in the form

yp(x) =

∫ ∞

−∞
Yp(x;x

′)dx′ =

∫ ∞

−∞
f(x′)G(x;x′)dx′ . (8.44)

Thus, if we can determine the form of the Green’s function which corresponds to a particular differential
equation, all we need to do in order to find a solve that equation is to evaluate the integral in Eq. (8.44).

If you’re skeptical about this procedure or about the underlying idea of taking the principle of superpo-
sition to the continuum limit, there are a number of reassuring cross-checks that we can perform in order
to show that it works. For example, it’s not difficult to verify that the expression for yp(x) in Eq. (8.44) is
indeed a particular solution to our original differential equation. If we simply plug this alleged solution back
into Eq. (8.39), we find

f(x)
?
=

d2

dx2

∫ ∞

−∞
f(x′)G(x;x′)dx′ + P (x)

d

dx

∫ ∞

−∞
f(x′)G(x;x′)dx′ +Q(x)

∫ ∞

−∞
f(x′)G(x;x′)dx′

?
=

∫ ∞

−∞

[
d2G(x;x′)

dx2
+ P (x)

dG(x;x′)

dx
+Q(x)G(x;x′)

]
f(x′)dx′

?
=

∫ ∞

−∞
δ(x− x′)f(x′)dx′

= f(x) , (8.45)

where in going from the second to the third line, we have used Eq. (8.42). Thus, we see that yp(x) indeed
satisfies our original differential equation in Eq. (8.39) for all x. This is yet another testament to how useful
the principle of superposition can be — even in the continuum limit! Thus we see that, Green’s functions, like
Fourier series, provide us with another powerful tool for solving otherwise seemingly intractable differential
equations.

Example: Green’s Function for a Damped, Driven Harmonic Oscillator

As an example of how to derive the Green’s function for a particular differential equation, let’s determine
G(x;x′) for the damped, driven harmonic oscillator with a driving force F (x) . Once again, for purposes of
illustration, we’ll focus on the underdamped case. The equation of motion for this system is

d2x

dt2
+ 2β

dx

dt
+ ω2

0x =
ω2
0

k
F (t) , (8.46)

The Green’s function G(t; t′) is the solution to the corresponding equation with the inhomogeneous term
replaced by a delta function:

d2G(t; t′)

dt2
+ 2β

dG(t; t′)

dt
+ ω2

0G(t; t′) = δ(t− t′) . (8.47)

This equation has exactly the same form as Eq. (8.17), with J/m → 1 and t∗− → t′, so the solution for
G(t; t′) is the solution we derived for x(t) in Eq. (8.33) with the corresponding replacements for J/m and t∗:

G(t; t′) = e−β(t−t′) 1

ω1
sin[ω1(t− t′)]Θ(t− t′) . (8.48)
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8.5 Determining the Green’s Functions

Admittedly, we didn’t have to do much work in order to find the Green’s function for the damped, driven
harmonic-oscillator equation in the example given above, since we had basically already derived it in Sect. 8.3
up to an overall constant. However, the procedure for finding the Green’s function for an arbitrary second-
order linear differential equation of the form given in Eq. (8.39) is pretty much analogous. The corresponding
equation which the Green’s function must satisfy is

d2G(x;x′)

dx2
+ P (x)

dG(x;x′)

dx
+Q(x)G(x;x′) = δ(x − x′) . (8.49)

For every value of x other than x = x′, the delta function evaluates to zero, so for x < x′ or x > x′, this
equation reduces to the complementary equation

d2G(x;x′)

dx2
+ P (x)

dG(x;x′)

dx
+Q(x)G(x;x′) = 0 . (8.50)

Provided that we can find the general solution to this homogeneous equation, we can use this general solution
to construct a piecewise solution forG(x;x′) in the same way we constructed our solution x(t) for the damped,
driven harmonic-oscillator equation Sect. 8.3.

We can make some more concrete statements about the form of this piecewise solution based on some
things we already know about the properties of general solutions to equations like Eq. (8.50) In particular
we saw in Chapter 5 of these notes that we can always write the general solution y(x) to a second-order
homogeneous linear differential equation as the sum of two linearly independent solutions with arbitrary
coefficients

y(x) = C1y1(x) + C2y2(x) , (8.51)

where values of C1 and C2 are determined by the boundary conditions. Therefore, since G(x;x′) satisfies
Eq. (8.50) on either side of the delta-function “spike,” we know that our piecewise solution for G(x;x′) can
be written in the form

G(x;x′) =

{
A−y1(x) +B−y2(x) x < x′

A+y1(x) +B+y2(x) x > x′ .
(8.52)

The coefficients A− and B− which characterize the solution for x < x′ and the coefficients A+ and B+ which
characterize the solution for x > x′ will in general be different.

The next step is to impose the boundary conditions at x = x′ and thereby join the two pieces of our
piecewise solution in Eq. (8.52) together in a manner that properly accounts for the effect of the delta
function. These boundary conditions provide us with two constraints on the four unknown coefficients which
appear in this equation. The remaining two constraints that we would need in order to completely determine
all of these coefficients would have to come from some other input such as, for example, a set of boundary
conditions for G(x;x′) at x → −∞. However, we are once again only interested in obtaining a particular
solution to Eq. (8.49), so as long as our solution for G(x;x′) respects the boundary conditions at x = x′, we
can choose any convenient values for the remaining two coefficients. One particularly convenient choice is to
set A− = B− = 0 so that Eq. (8.52) reduces to

G(x;x′) =

{
0 x < x′

A+y1(x) +B+y2(x) x > x′ .
(8.53)

Now let’s apply the boundary conditions at x = x′. First of all, we know that G(x;x′) itself must be
continuous across the boundary, so the two pieces of our piecewise solution must be equal at x = x′. This
give us

0 = A+y1(x
′) +B+y2(x

′) . (8.54)

The boundary condition relating the derivatives of the two pieces of G(x;x′) across the boundary is a little
bit more complicated because the delta function introduces a discontinuity in the x-derivative of G(x;x′)
at this point. We can determining this discontinuity in essentially the same way that we determined the
discontinuity in v(t) for the impulse-driven oscillator in Sect. 8.3. We simply integrate both sides of Eq. (8.49)
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over an infinitesimal range of x values centered around x = x′ and then take the ǫ→ 0 limit of the resulting
expression. Doing so, we find that

∫ x′+ǫ

x′−ǫ

[
d2G(x;x′)

dx2
+ P (x)

dG(x;x′)

dt
+Q(x)G(x;x′)

]
dx =

∫ x′+ǫ

x′−ǫ

δ(x− x′)dx

dG(x;x′)

dx

∣∣∣∣
x′+ǫ

x′−ǫ

+

∫ x′+ǫ

x′−ǫ

[
P (x)

dG(x;x′)

dx
+Q(x)G(x;x′)

]
dx = 1

dG(x;x′)

dx

∣∣∣∣
x′+ǫ

x′−ǫ

+ P (x)G(x;x′)

∣∣∣∣
x′+ǫ

x′−ǫ

+

∫ x′+ǫ

x′−ǫ

[
Q(x)G(x;x′)− dP (x)

dx
G(x;x′)

]
dx = 1 , (8.55)

where in going from the second to the second line, we have used integration by parts. Now we know that
G(x;x′) is continuous at x = x′, so as long as the function P (x) and its first derivative are continuous at
x = x′, the second and third terms on the left-hand side of this equation vanish in the ǫ → 0 limit. Thus,
we find that the discontinuity in the x-derivative of G(x;x′) is

∆

[
dG(x;x′)

dx

]
≡ lim

ǫ→0
,
dG(x;x′)

dt

∣∣∣∣
x′+ǫ

x′−ǫ

= 1 . (8.56)

Applying this boundary condition to the function form of G(x;x′) in Eq. (8.53) gives us our second equation
for the coefficients A+ and B+:

A+
dy1(x)

dx
+B+

dy2(x)

dx
= ∆

[
dG(x;x′)

dx

]
= 1 . (8.57)

We now have two equations — Eqs. (8.54) and (8.57) — and two unknowns, so we can solve the system
and determine the values of A+ and B+. The result can be most cleanly expressed in the form

A+ = − y2(x
′)

W (x′)
, B+ =

y1(x
′)

W (x′)
, (8.58)

where the quantity W (x′) appearing in the denominator in each of these expressions is the Wronksian

W (x) = y1(x)
dy2(x)

dx
− y2(x)

dy1(x)

dx
(8.59)

that we met in Chapter 5, evaluated at x = x′. Plugging this result into Eq. (8.53), we obtain our final
formula for the Green’s function for

G(x;x′) =
1

W (x′)

[
y1(x

′)y2(x)− y2(x
′)y1(x)

]
Θ(x− x′) , (8.60)

where Θ(x− x′) once again denotes the Heaviside theta function from Eq. (8.31).

Problems

1. Evaluate the following integrals:

(a)

∫ 2

1

lnxδ(4x + 3)dx

(b)

∫ ∞

−∞
e3xδ(5x)dx

(c)

∫ 4

−10

(5x+ 3)δ(e3x − 1)dx .
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Figure 8.5: A driving force F (t) which consists of of a square pulse with height F0 and width 2a.

2. Show that for a 6= b, we have

δ
[
(x− a)(x− b)

]
=

∣∣∣∣
1

a− b

∣∣∣∣
[
δ(x− a) + δ(x− b)

]
. (8.61)

3. Verify that the solution in Eq. (8.33) satisfies the equation of motion in Eq. (8.17) for general t∗ when
the block begins from rest at its equilibrium position at some time t0 < t∗.

4. In Sect. 8.3, we calculated the solution x(t) for an underdamped, driven harmonic oscillator with an
impulsive driving force F (t) = Jδ(t− t∗).

(a) Determine the corresponding solutions for an overdamped oscillator with the same impulsive
driving force.

(b) Determine the corresponding solutions for an critically-damped oscillator with the same impulsive
driving force.

5. Show that the Dirac delta function is the derivative of the Heaviside theta function defined in Eq. (8.31).
In other words, show that

dΘ(t)

dt
= δ(t) . (8.62)

6. Consider the differential equation

x2 d
2y

dx2
− 2x

dy

dx
+ 2y = f(x) , (8.63)

where f(x) is some function of the independent variable x.

(a) Verify that y1(x) = x and y2(x) = x2 are solutions to the complementary equation.

(b) Find the Green’s function for this equation. Be careful about how you apply Eq. (8.60). This
formula assumes that the original differential equation has the form Eq. (8.49), which is not the
case here.

(c) Use your result from part (b) to find a particular solution yp(t) to the original differential equation
in the case where the inhomogeneous term has the form

f(x) =

{
0 x < a

x− a x > a ,
(8.64)

where a is a positive constant.

7. Consider a underdamped harmonic oscillator which consists of a block attached to a spring, subject
to a linear drag force. The oscillator is is driven by a force F (t) which consists of a square pulse with
width 2a and height F0, as shown in Fig. 8.5.
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(a) Use the method of Green’s functions to find a piecewise solution for the position x(t) of the
block as a function of time, assuming the block starts from rest at its equilibrium position. This
piecewise solution will consist of three pieces: one for t < −a, one for −a < t < a, and one for
t > a.

(b) Use Mathematica to create a plot of this piecewise solution for ω0 = 1 s−1, β = 0.2 s−1, F0 =
1 N/m, m = 1 kg, and a = 1 m. Make sure you adjust the range of your plot so that all three
pieces of the solution are shown.



Chapter 9

Coupled Oscillations and Linear

Systems of Equations

• The physics: Coupled oscillators, normal modes, beats, longitudinal and transverse oscillations,
dispersion relations, phonons and vibrations.

• The math: Linear algebra, inner and outer products of vectors, matrix inversion, determinants and
traces, eigenvalues and eigenvectors, diagonalization.

9.1 Systems of Differential Equations

Over the last several chapters of these lecture notes, we have developed a series of increasingly sophisticated
techniques for solving differential equations. However, up to this point, we have focused on systems that
can be described by a single differential equation involving a single dependent variable y(x) and a single
independent variable x. In this chapter, we will take a look at some examples of physical systems which
are described by multiple differential equations involving some number N > 1 of dependent variables yi(x),
where i = {1, . . . , N}, all of which are functions of a single independent variable x.1 We will examine a few
techniques for solving coupled systems of differential equations — including systems of coupled harmonic
oscillators. Finally, we shall see how wave phenomena can emerge out of the collective oscillations of large
numbers of coupled oscillators.

9.2 Our First Coupled System: Two Oscillators

We’ll begin our discussion of coupled oscillations by first examining a simple system consisting of two blocks,
each of mass m, attached to each other and to a pair of fixed walls by a set of three springs, as shown in
Fig. 9.1. Each of the springs has the same spring constant k. For now, let’s assume that the effects of friction
and other damping forces are negligible. In this case, the total force acting on each block at any given time
t is simply the sum of the forces exerted by the two springs to which the block is directly attached.

Let’s consider what happens when the blocks are set in motion. We’ll begin by defining a pair of
coordinates — which we’ll call x1 and x2 — which represent the displacement of the blocks from their
respective equilibrium positions x1,eq and x2,eq, as shown in the bottom panel of Fig. 9.1. Provided that
Hooke’s Law holds, the force exerted by each spring is proportional to the total distance that the spring
is compressed relative to its equilibrium length. At any given time t, the springs which connect the left
and right blocks to the walls are compressed a distance −x1(t) and x2(t), respectively, whereas the spring
between the two blocks is compressed a distance x1 − x2. Thus, for the block on the left, Newton’s Second

1Increasing the number of independent variables takes us from the real of ordinary differential equations to the realm of
partial differential equations, which is another topic entirely.
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kk k

x1,eq x2,eq

m m

kk k

m m

x1 x2

Figure 9.1: A pair of blocks, each with mass m, attached to each other and to the walls by springs with spring
constant k. The top panel shows the blocks at equilibrium. The bottom panel shows the blocks oscillating.
The coordinates x1 and x2 are defined relative to the initial positions x1,eq and x2,eq of the respective blocks.

Law gives

m
d2x1

dt2
= − kx1 − k(x1 − x2) = − 2kx1 + kx2. (9.1)

Similarly, for the block on the right, Newton’s Law gives

m
d2x2

dt2
= − kx2 + k(x1 − x2) = − 2kx2 + kx1. (9.2)

The important thing to notice about about Eqs. (9.1) and (9.2) is that the spring force provided on each
block by the central spring depends on both x1 and x2. The acceleration of the the left block therefore
depends on the position of the right block and vice verse. In other words, these two equations of motion are
coupled in the sense that we can’t solve for x1(t) and x2(t) separately. Instead, we must simultaneously
solve these two equations as a system in order to find the positions of either block as a function of time.

The easiest way to solve this system of equations is to see if we can decouple the system by combining
Eq. (9.1) and Eq. (9.2) in such a way that the resulting equations can be solved separately. For example, if
we add these two equations together, we get

m
d2

dt2
(x1 + x2) = − k(x1 + x2) . (9.3)

We observe that x1(t) and x2(t) appear in this equation only in the combination x+(t) ≡ x1(t) + x2(t). We
can therefore view it as an equation of motion for the quantity x+(t):

d2x+

dt2
= − k

m
x+ . (9.4)

Likewise, if we subtract Eq. (9.2) from Eq. (9.1), we get

m
d

dt
(x1 − x2) = − 3k(x1 − x2) . (9.5)

We observe that x1(t) and x2(t) appear in this equation only in the combination x−(t) = x1(t)−x2(t). Thus,
we may view it as an equation of motion for the quantity x−:

d2x−
dt2

= − 3k

m
x− . (9.6)
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Now that we’ve decoupled the equations of motion for our coupled-oscillator system, solving for x1(t)
and x2(t) is straightforward. Indeed, Eq. (9.4) and Eq. (9.6) both look like the equation of motion for a
simple harmonic oscillator! Thus, we know that the general solutions for x±(t) can be written in the form

x+(t) = A+ cos(ω+t+ φ+)

x−(t) = A− cos(ω−t+ φ−) , (9.7)

where we have defined the oscillator frequencies

ω+ ≡
√

k

m
, ω− ≡

√
3k

m
. (9.8)

The amplitudes A± and phases φ± of these solutions are determined by the boundary conditions, as usual.
Now that we have the solutions for x+(t) and x−(t), it’s easy to determine the solutions for our original
coordinates x1(t) and x2(t) as well. Indeed, since the relationship between our two sets of coordinates is
such that

x1(t) =
x+(t) + x−(t)

2
, x2(t) =

x+(t)− x−(t)

2
, (9.9)

we find that the solutions for x1(t) and x2(t) are

x1(t) =
A+

2
cos(ω+t+ φ+) +

A−
2

cos(ω−t+ φ−) (9.10)

x2(t) =
A+

2
cos(ω+t+ φ+)−

A−
2

cos(ω−t+ φ−) . (9.11)

In order to visualize better what these solutions for x1(t) and x2(t) actually look like, let’s choose a
particular set of boundary conditions for our system so that we can plot the results. In particular, let’s
consider a situation in which both of the blocks are initially at rest at time t = 0. Moreover, let’s say that
one of them — let’s make it the block on the left — is initially displaced from equilibrium by an amount
a, while the other is initially at its equilibrium position. The boundary conditions that correspond to this
initial physical state of the system are

v1(0) = v2(0) = 0 , x1(0) = a , x2(0) = 0 . (9.12)

We’ll start by applying the boundary condition on the initial velocities. Differentiating the expressions
in Eqs. (9.10) and (9.11) gives the general expressions for v1(t) and v2(t):

v1(t) = −A+ω+

2
sin(ω+t+ φ+)−

A−ω−
2

sin(ω−t+ φ−) (9.13)

v2(t) = −A+ω+

2
sin(ω+t+ φ+) +

A−ω−
2

sin(ω−t+ φ−) . (9.14)

The boundary conditions at t = 0 require that

−A+ω+

2
sin(φ+)−

A−ω−
2

sin(φ−) = v2(0) = 0

−A+ω+

2
sin(φ+) +

A−ω−
2

sin(φ−) = v2(0) = 0 . (9.15)

These equations can both be satisfied by taking φ+ = φ− = 0. Plugging this result back into Eqs. (9.10)
and (9.11) and imposing the boundary conditions on the x1(0) and x2(0) gives us a pair of equations for A+

and A−:
A+ +A−

2
= x1(0) = a ,

A+ −A−
2

= x2(0) = 0 . (9.16)

The solution is

A+ = A− = a . (9.17)
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Substituting this result back into Eqs. (9.10) and. (9.11) gives us our final result expressions for x1(t) and
x2(t) for this choice of boundary conditions:

x1(t) = a
[
cos(ω+t) + cos(ω−t)

]
(9.18)

x2(t) = a
[
cos(ω+t)− cos(ω−t)

]
. (9.19)

These solutions are plotted in Fig. 9.2 for the parameter choices choice a = 1 and k/m = 1.

Figure 9.2: The top left and bottom left panels show the positions x1(t) and x2(t) of the blocks as functions of
time, respectively. The top right and bottom right panels show the value of the variables x+(t) = x1(t)+x2(t)
and x−(t) = x1(t) − x2(t) as functions of time, respectively. For all of of the results shown in all of the
panels, we have taken a = 1 and k/m = 1.

Our end goal in analyzing this system of oscillators was, of course, to obtain general expressions for the
coordinates x1(t) and x2(t) which describe the physical positions of the blocks. However, the coordinates
x+(t) and x−(t) for which the corresponding differential equations decoupled are also are also clearly very
important in terms of characterizing the dynamics of those blocks. It’s therefore useful to attempt to
understand their physical significance a bit better. The easiest way to do this is to consider what happens
when either A+ or A− is set to zero and so that only one of these coordinates is non-zero.

For example, let’s consider what happens if we were to set A− = 0 with A+ 6= 0. This implies that
x−(t) = x1(t)−x2(t) = 0 for all time, which means that the distance between the positions of the two blocks
remains constant as x+(t) evolves. In other words, the “mode” of oscillation with A− = 0 corresponds to the
two blocks sliding back and forth in unison, as shown in the left panels of Fig. 9.3. By contrast, the if we set
A+ = 0 with A− 6= 0, we have x+(t) = x1(t) + x2(t) = 0 for all time, which means that the displacements
of the two blocks from their equilibrium positions must always have the same magnitude but opposite sign.
This “mode” of oscillation is illustrated in the right panels of Fig. 9.3. These two modes of oscillation are
our first example of what are called normal modes for a system of coupled oscillators. Since x1(t) and
x2(t) are just linear combinations of x+(t) and x−(t), we can think of any motion of the positions of the
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x+(t) mode: ω+ =

√
k

m
x−(t) mode: ω− =

√
3k

m

x1,eq x2,eq x1,eq x2,eq

x1,eq x2,eq x1,eq x2,eq

Figure 9.3: Illustration of the two normal modes of oscillation for the coupled system of two harmonic
oscillators shown in Fig. 9.1. The panels on the left correspond to oscillations of the coordinate x+(t) alone;
the panels on the right correspond to oscillations of the coordinate x−(t) alone. Any patter of oscillations of
the physical positions x1(t) and x2(t) of the two blocks can be thought of a a superposition of contributions
from these two normal modes.

blocks as being a linear combination of these normal modes. As we shall soon see, the motion of even more
complicated systems of oscillators can be represented in terms of a set of normal modes which characterize
the system.

9.3 Our Second Coupled System: Charged Particle in a Magnetic

Field

Another example of a commonplace physical system which is described by a set of coupled differential
equations is the motion of a charged particle moving in a magnetic field. This is a useful example to
consider alongside the coupled-harmonic-oscillator example from Sect. 9.2 because it highlights a different
technique which can be useful for solving coupled differential equations which can’t be decoupled by adding
and subtracting the individual equations of motion.

Let’s begin by reminding ourselves how the motion of a charged particle is affected by the presence of a
magnetic fields. You may recall from introductory physics that that the Lorentz force on a particle with an
electric charge q and mass m moving in a magnetic field ~B is given by

~F = q~v × ~B , (9.20)

where ~v denotes the velocity vector for the particle. We’ll focus here on the particular case in which the
magnetic field ~B = B0ẑ is constant and points in the z-direction. In this case, the force vector is

~F = qB0vyx̂− qB0vxŷ . (9.21)

The trajectory of the particle is governed, as usual, by Newton’s Second Law. The vector form of this law is

~F = m~a . (9.22)

When we write this vector equation out in components for the force in Eq. (9.21), we obtain a system of
three coupled second-order differential equations describing the motion of the particle:

d2x

dt2
= Fx =

qB0

m

dy

dt
d2y

dt2
= Fy = − qB0

m

dx

dt
d2z

dt2
= Fz = 0 . (9.23)
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The differential equation for the z coordinate of the particle is trivial: the acceleration in the z-direction
is zero, so the particle just continues traveling along in this direction with whatever initial velocity vz,0 it
started with. In other words, the z component of the velocity is a constant:

vz(t) = vz,0 . (9.24)

By contrast, the differential equations for x and y are non-trivial and coupled. However, we can at least
simplify things a little bit by observing that neither of these equations involves the coordinates x or y
directly, but only the time-derivatives of these coordinates. This means that we can rewrite these second-
order differential equations for the coordinates x and y as first-order differential equations for the velocity
components vx and vy:

dvx
dt

=
qB0

m
vy (9.25)

dvy
dt

= −qB0

m
vx (9.26)

Can we simplify things further? Well, the trick that we used above to solve the system of equations in
Eqs. (9.1) and (9.2) doesn’t quite work in this case. Indeed, we find that adding and subtracting Eqs. (9.25)
and (9.26) gives us

d

dt
(vx + vy) =

qB0

m
(vy − vx) ,

d

dt
(vx − vy) =

qB0

m
(vx + vy) , (9.27)

which doesn’t help in decoupling the equations because the linear combination of x1 and x2 which appears
on the left side of each equation isn’t the same one which appears on the right side. Apparently we need an
alternative approach.

Fortunately, there is indeed another trick that we can use in order to solve this system of equations for
vx(t) and vy(t). The idea is to combine the two first-order differential equations in Eq. (9.26) and Eq. (9.26)
together into a single second-order differential equation which involves only one of the two variables. After
we’ve isolated that variable, we can use our original first-order equations to obtain the expression for the
other variable. We begin by taking the time derivative of both sides of Eq. (9.25):

d2vx
dt2

=
qB0

m

dvy
dx

. (9.28)

Now we can substitute in for dvy/dx using Eq. (9.26). The resulting equation

d2vx
dt2

= − q2B2
0

m2
vx (9.29)

involves vx alone, so we can solve it directly. We don’t have to work terribly hard to find the solution either.
This equation has the same form as the the simple-harmonic-oscillator equation with an oscillator frequency

ωc ≡
qB0

m
. (9.30)

We therefore know that the general solution for vx(t) can be written in the form

vx(t) = V cos(ωct+ φ) , (9.31)

where V and phase φ are constant parameters to be determined by the boundary conditions applicable to
the problem. It’s also worth that the angular frequency ωc is just the angular version of the cyclotron

frequency fc:

fc ≡
ωc

2π
=

qB0

2πm
. (9.32)

Now that we have our solution for vx(t), we can obtain a solution for vy(t) by substituting Eq. (9.31)
back into Eq. (9.25):

dvx
dx

= − V ωc sin(ωct+ φ) =
qB0

m
vy(t) = ωcvy(t) . (9.33)
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Figure 9.4: The trajectory (red curve) of a charged particle moving in a constant magnetic field pointing in
the z direction. The magnetic field itself is shown in blue. The particle begins its motion at at bottom of
the figure at t = 0 and travels upward, coiling around the magnetic field lines as it goes.

Collecting this result for vy(t) together with the results for vz(t) and vx(t) in Eqs. (9.24) and (9.24), we find
that the components of the particle’s velocity vector ~v are

vx(t) = V cos(ωct+ φ)

vy(t) = −V sin(ωct+ φ)

vz(t) = vz,0 (9.34)

To obtain the corresponding components of the particle’s position vector ~x are simply the integrals of these
expressions with respect to time. Evaluating these integrals and choosing our time coordinate so that t0 = 0,
we find that the trajectory of a charged particle as it moves through the constant magnetic field in the z
direction is

x(t) =
V

ωc
sin(ωct+ φ) + x0

y(t) =
V

ωc
cos(ωct+ φ) + y0

z(t) = vz,0t+ z0 , (9.35)

where x0, y0, and z0 are the initial values of x(t), y(t), and z(t) at t = 0. Note that these three components
of the initial position vector of the particle, along with V , vz,0, and φ, amount to six free parameters. Indeed,
this is the appropriate number of free parameters we need in order to characterize the general solution to
the three second-order differential equations with which we began in Eq. (9.23).

The trajectory described by the three expressions in Eq. (9.35) is illustrated in Fig. 9.4. The charged
particle begins its motion at at bottom of the figure at t = 0 and travels upward, coiling around the magnetic
field lines as it goes.

9.4 Vector Spaces

In each of the two previous sections, we focused on a different physical system whose dynamics were described
by a set of coupled differential equations. We were able to decouple each of these sets of equations by using
a different trick. We solved the equations governing the coupled-oscillator system in Sect. 9.2 by adding
and subtracting the equations of motion for the individual oscillators. We solved the coupled equations of
motion for a charged particle moving in a magnetic field in Sect. 9.3 by substituting one of these first-order
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equations into the other to obtain a second-order equation. However, each of these tricks was useful only
because the corresponding equations of motion happened to take a particular form.

Fortunately, there is a more general approach for decoupling and solving systems of coupled linear dif-
ferential equations. This approach involves recasting these equations in terms of vectors and matrices and
using the machinery of linear algebra in order to decouple the system and obtain a solution. Therefore, we
begin our discussion of this more general approach to coupled systems of linear differential equations with
a brief review of some of the fundamental concepts from linear algebra which we will need, beginning with
the concept of a vector space.

A vector space comprises of a set of objects called vectors, which we’ll denote {|α〉, |β〉, |γ〉, . . .}, along
with another set of objects2 called scalars or numbers, which we’ll denote {a, b, c, . . .}. In any vector space,
two fundamental mathematical operations are always defined for how these objects can be combined together.
First, there must be some sense in which we can add a pair of vectors |α〉 and |β〉 together to get another
vector |γ〉 = |α〉+ |β〉. Second, there must be some sense in which we can multiply a scalar a by a vector |α〉
and get another vector. In order for the set of objects on which these two operations act to be considered a
vector space, these operation must satisfy the following criteria.

• The vectors in the vector space must satisfy a property called closure.3 What this means is that
whenever we add any two vectors |α〉 and |β〉 in the space together, their sum |γ〉 = α + β must also
be a vector in the space. Likewise, whenever we multiply a vector by a scalar, the product |β〉 = a|α〉
must also be a vector in the space.

• Vector addition must be commutative in the sense that

|α〉 + |β〉 = |β〉 + |α〉 . (9.36)

• Vector addition must be associative in the sense that

|α〉+
(
|β〉+ |γ〉

)
=
(
|α〉 + |β〉

)
+ |γ〉 . (9.37)

• Scalar multiplication must be associative in the sense that

a
(
b|α〉

)
= (ab)|α〉 . (9.38)

• The multiplication of vectors by scalars must be distributive in two different senses:

(a+ b)|α〉 = a|α〉+ b|α〉 (9.39)

a
(
|α〉 + β〉

)
= a|α〉+ aβ〉 . (9.40)

• A vector space must include a special vector which is called the additive identity element. This
vector, which we will denote |0〉, has the property that the sum of this vector with any vector |α〉 in
the space is just |α〉 itself:

|0〉+ |α〉 = α for all |α〉 . (9.41)

• Likewise, a vector space must include a special scalar which is called the multiplicative identity

element. This scalar, which we will denote 1, has the property that the product of this scalar and
any vector |α〉 in the space is just |α〉 itself:

1|α〉 = |α〉 for all |α〉 . (9.42)

• Finally, every vector in a vector space must have an additive inverse. The additive inverse | − α〉 of
a vector is another vector in the space4 for which

|α〉+ | − α〉 = |0〉 . (9.43)
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|α〉

|γ〉 = |α〉 + |β〉

|β〉
|α〉

|β〉 = 2|α〉

Figure 9.5: An illustration of how the two basic operations on the elements of a vector space are carried
out within the familiar vector spaces R2 and R3. The left panel shows two vectors |α〉 and |β〉 being added
together tip to tail; the right panel shows the multiplication of a vector |α〉 by the scalar a = 2.

The properties in this list are admittedly defined in a very abstract way. However, these properties also
conform quite nicely to our intuitive notion of what a vector is. Indeed, if think about it for a moment, you’ll
realize that these requirements are satisfied by the familiar kinds of vectors we commonly use to describe
quantities like positions, velocities, or forces in two or three spatial dimensions. Indeed, vectors of this sort
are members of the vector spaces which mathematicians call R2 and R3, respectively. In these cases, you
know that one adds two vectors by placing them head to tail and that the multiplication of a vector by
a number simply scales the vector by the corresponding amount. These two operations are illustrated in
Fig. 9.5. Each one clearly produces another vector in the space.

However, there are many other collections of objects that qualify as vector spaces. Many of these objects
do not conform to our intuitive idea of what a vector should look like, but they nevertheless satisfy the
criteria for a vector space. A few examples are given below.

• The null vector |0〉 itself, along with any set of scalars. This is a strange and somewhat trivial example,
but it indeed satisfies all of the above criteria for a vector space. The closure requirement is satisfied
because |0〉 + |0〉 = |0〉 and a|0〉 = |0〉 for any scalar a. Moreover, |0〉 is its own additive inverse and
functions as the additive identity element.

• The set of functions f(x) for which f(0) = 0 (our vectors) along with the set of real numbers (our
scalars). A space like this, in which the vectors are functions of some independent variable x, is called
a function space. In such a space, the vector-addition operation simply corresponds to adding two
functions f(x) and g(x) together in the standard manner to produce a new function h(x) = f(x)+g(x).
This particular function space is closed under vector addition because h(0) = f(0) + g(0) = 0 + 0 = 0
for any vectors f(x) and g(x) in the space. It is also closed under the multiplication of vectors by
scalars. Indeed, h(x) = af(x) is also in the space because h(0) = af(0) = 0 for any scalar a.

• The set of functions of the form f(x) = f0 + f1x, where f0 and f1 are arbitrary constants. The sum of
two such functions is

h(x) = f(x) + g(x) = (f0 + g0) + (f1 + g1)x , (9.44)

so h(x) is also a vector in the space, with h0 = f0 + g0 and h1 = f1 + g1. Closure under scalar
multiplication is also easy to prove.

Linear Combinations of Vectors:

2Technically, the set of scalars associated with a vector space cannot be completely arbitrary. In particular, they must
collectively constitute what mathematicians call a field. This technicality won’t concern us here, since the collections of scalars
we’ll be using for all of the vector fields we’ll be dealing with in this chapter, including both the real numbers R and the complex
numbers C, are fields in this sense.

3The corresponding adjective is “closed.”
4This “other vector” need not necessarily be different from |α〉 itself. In other words, it is perfectly legitimate for a vector

to be its own additive inverse. For example, the additive identity element |0〉 in any vector space is always its own inverse.
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A linear combination of vectors is simply the sum of N vectors |αn〉, where n = 1, 2, . . . , N , each of
which is multiplied by a scalar an. Since vector addition and the multiplication of vectors by scalars are
operations which are guaranteed to return another vector in the space, we know that any linear combination
of vectors

|β〉 =

N∑

n=1

an|αn〉 (9.45)

must be another vector in the space.

Linear Independence:
In Chapter 5, we introduced the concept of linear independence for functions. In particular, we defined

a pair of functions y1(x) and y2(x) to be linearly independent if the only solution to the equation

ay1(x) + by2(x) = 0 (9.46)

valid for all x, where a and b are arbitrary coefficients, is a = b = 0. The definition of linear independence for
vectors is quite similar. In particular, a set of N vectors |αn〉, where n = 1, 2, . . . , N , are said to be linearly
independent if the only solution to the equation

N∑

n=1

an|αn〉 = |0〉 , (9.47)

where the an are arbitrary scalars, is an = 0 for all n.
If our vector space happens to be a function space, this condition corresponds to a generalization of

the linear-independence criterion for two functions y1(x) and y2(x) stated above. In particular, a set of
N functions yn(x), where n = 1, 2, . . . , N , are said to be linearly independent if the only solution to the
equation

a1y1(x) + a2y2(x) + . . .+ aNyN(x) = 0 (9.48)

valid for all x is an = 0 for all n.5

Spanning the Space:
A set of N vectors |αn〉, where n = {1, 2, . . . , N} in a vector space is said to span the space if every

vector |β〉 in the space can be written as a linear combination of the these vectors for some set of scalar
coefficients an:

|β〉 =

N∑

n=1

an|α〉 = a1|α1〉+ a2|α2〉+ . . . aN |αN 〉 . (9.49)

Basis:
A set of vectors in a vector space which are both linearly independent and span the space are called a

basis. The concept of a basis is sufficiently important in the analysis of vector spaces that we will use a
special notation |en〉 to denote a set of vectors which form a basis. Since the |en〉 span the space, we know
that any vector |α〉 can be written as a linear combination of these basis vectors:

|α〉 =
N∑

n=1

an|en〉 = a1|e1〉+ a2|e2〉+ . . . aN |eN〉 . (9.50)

However, because the |en〉 are also linearly independent, we know that there is no redundancy among them.
This means that the set of an which characterize a given vector |α〉 in a particular basis is unique. It also
means that a basis always contains precisely the minimal number of vectors necessary to express any vector

5If you’re wondering whether there is a generalization of the Wronksian for a set of N functions yn(x), there is indeed. In

particular, the Wronksian W (x) is the determinant of the N ×N matrix whose elements are given by Wij = y
(i−1)
j

(x), where

y
(i−1)
j

(x) denotes the (i − 1)th derivative of the function yj(x). You can read more about determinants in Sect. 9.6. You can

also verify that W (x) reduces to the familiar form from Chapter 5 in the case where N = 2.
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in the space through linear combinations of the form given in Eq. (9.50). This minimal number of vectors is
referred to as the dimension of the vector space.

Since a given vector |α〉 is characterized by a unique set of N coefficients an in any particular basis,
we can unambiguously describe |α〉 by providing a list of these N coefficients — provided, of course, that
we are clear about what basis we’re working in. The coefficients in this list are called the components of
|α〉 in that basis. These components are sometimes expresses as an N -tuple of the form (a1, a2, . . . , aN ).
Alternatively, it is often convenient to express them as an array of the form

|α〉 ↔ a =




a1
a2
...

aN


 . (9.51)

This notation for vectors is likely to be more familiar. The double arrow is used here to indicate that the
component-wise expression a for the vector |α〉 is only defined with respect to a particular basis. In what
follows, we will use |α〉 to refer to a vector in the most general, abstract sense and a to refer to a vector in
a particular basis.6

One of the advantages of working in a particular basis is that it makes performing the fundamental
operations on vectors and scalars within a vector spaces operationally much simpler. Vector addition in a
particular basis just corresponds to adding the individual components of the two vectors together:

|α〉+ β〉 = a+ b =




a1 + b1
a2 + b2

...
aN + bN


 . (9.52)

Likewise, multiplying a vector by a scalar corresponds to multiplying each component by that same scalar:

a|β〉 ↔ ab =




ab1
ab2
...

abN


 . (9.53)

It’s important to keep in mind that the description of a vector |α〉 in terms of components — either as
an N -tuple or as a column of numbers — only makes sense if we know the basis in which we’re working. For
example, when we write down vectors in R

3 in terms of their components without explicitly declaring what
the basis is, the tacit assumption is that we are working in a basis where the three basis vectors |e1〉, |e2〉,
and |e3〉 correspond to the unit vectors x̂, ŷ, and ẑ, respectively.

Example: Basis for a Function Space

As an example of how one goes about finding a basis for an abstract vector space, let’s find a basis for the
function space which consists of all functions of the form f(x) = a1x + a2x

2. It’s not difficult to verify
that this set of functions is closed under both vector addition and scalar multiplication and therefore indeed
constitutes a vector space.

In order to construct a basis for this vector space, we need to find a set of linearly-independent functions
which span the space. One good guess might be the functions y1(x) = x and y2(x) = x2. Indeed, these
functions are linearly independent because the Wronksian for y1(x) and y2(x) is

W (x) = y1
dy2
dx
− y2

dy1
dx

= x · 2x− x2 · 1 = x2 , (9.54)

6In lecture, I will use the notation ~a rather than a to refer to the description of a vector in a particular basis.
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which is not identically zero for all x. Moreover, they span the space because any function f(x) in our
function space can be written as a linear combination of these two functions:

f(x) = a1x+ a2x
2 = a1y1(x) + a2y2(x) . (9.55)

Thus, the functions x and x2 constitute a basis for this function space. Since this basis contains two basis
vectors the dimension of our function space is 2.

9.5 The Inner Product and Inner Product Spaces

The fundamental operations which define a vector space — vector addition and the multiplication of a vector
by a scalar — are recipes for combining two vectors to get a vector and combining two scalars to get a vector.
These two operations are the only ones that need to be defined in order for a collection of scalars and vectors
to constitutes vector space. However, in many vector spaces — including the familiar examples R2 and R3

— it is possible to define additional operations, such as a procedure for combining any two vectors to get
a scalar. Such an operation is called the inner product of those vectors, and a vector space for which an
inner product is defined is called an inner-product space.

The inner product of two vectors |α〉 and |β〉 is usually written 〈α|β〉, and it must satisfy the following
criteria.

• The inner product of any vector |α〉 with any other vector |β〉 in the space must be equal to the complex
conjugate of the inner product of |β〉 with |α〉:

〈α|β〉 = 〈β|α〉∗ . (9.56)

• The inner product must be distributive in the sense that

〈γ|
(
|α〉+ |β〉

)
= 〈γ|α〉+ 〈γ|β〉 . (9.57)

• The inner product must have the property that

〈β|
(
c|α〉

)
= c〈β|α〉. (9.58)

• The inner product of a vector with itself must satisfy the condition

〈α|α〉 ≥ 0 , (9.59)

with equality only in the case in which |α〉 = |0〉 is the null vector.

Norm:
The norm of a vector |α〉 vector, which is typically denoted ||α||, is the square root of the inner product

of the vector with itself:

||α|| =
√
〈α|α〉 . (9.60)

The norm of a vector has a direct, physical interpretation for vectors in R2 and R3: it corresponds to the
length or magnitude of the vector. A vector which has a norm ||α|| = 1 is said to be normalized.

Orthogonality:
Two vectors are said to be orthogonal if their inner product vanishes — i.e., if

〈α|β〉 = 0 . (9.61)

For a pair of vectors in R2 or R3, this condition corresponds to those vectors being perpendicular to one
another.
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An orthonormal basis is a set of basis vectors |en〉 which are all normalized and mutually orthogonal.
In other words, we must have ||en|| = 1 for all n and 〈em|en〉 = 0 for m 6= n. These conditions can be written
in the compact form

〈em|en〉 = δmn (9.62)

where we have introduced the symbol known as the Kronecker delta,7 which is defined such that

δmn =

{
1 m = n

0 m 6= n
. (9.63)

In R
2 or R

3, this condition corresponds to the basis vectors being not only perpendicular to one another,
but also each having length 1. For example, the unit vectors x̂, ŷ, and ẑ constitute an orthonormal basis for
R3.

The useful thing about working in an orthonormal basis is that it makes computing the inner product of
two vectors much simpler. First of all, we note that in any basis, I can always expand a vector |α〉 is terms
of the basis vectors, as in Eq. (9.50). Moreover, since the inner product of any two vectors must satisfy
Eq. (9.56), the corresponding expansion for 〈α| in terms of the basis vectors must be

〈α| =

N∑

n=1

〈en|a∗n . (9.64)

Thus, when we are working in an orthonormal basis, the inner product of two vectors reduces to

〈α|β〉 =

(
N∑

m=1

〈en|a∗m

)(
N∑

n=1

|en|a∗n〉
)

=

N∑

m=1

N∑

n=1

a∗mbn〈em|en〉

=
N∑

m=1

N∑

n=1

a∗mbnδmn

=

N∑

n=1

a∗nbn = a∗1b1 + a∗2b2 + . . . a∗NbN . (9.65)

Working in an orthonormal basis makes finding the components of a vector much simpler as well. In
particular, we can obtain the component an of a vector |α〉 by taking the inner product of |α〉 with the
corresponding basis vector |en〉:

〈en|α〉 = 〈en|
(

N∑

m=1

am|em〉
)

=
N∑

m=1

am〈en|em〉 =
N∑

m=1

amδmn = an .

These considerations in an of themselves make it clear how advantageous it is to work in an orthonormal
basis when dealing with vectors. Therefore, in the rest of this chapter, we will assume that we are working
in an orthonormal basis, unless we state otherwise. Thus, if a vector is expressed as an n-tuple or array of
numbers from this point forward, you should assume that the components in that array have been evaluated
with respect to an orthonormal basis unless you are explicitly told otherwise.

So how to we go about finding an orthonormal basis for the vectors in our vector space if we aren’t
explicitly given one? The answer is that there is a procedure which can be used to obtain an orthonormal
basis from any arbitrary set of vectors which are linearly independent and span the space. This procedure

7Take care not to confuse the Kronecker delta with the Dirac Delta function, as they represent very different things. The
Kronecker delta δmn represents a condition on a pair of integers m and n. By contrast, the Dirac delta function δ(x) is a
function of the continuous variable x.
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is called the Gram-Schmidt procedure. To see how it works, it’s best to begin with an example from R3.
Consider the set of vectors

a1 =




2
1
0


 , a2 =




2
3
0


 , a3 =




1
1
7


 (9.66)

whose components are given with respect to the usual basis in which the basis vectors are x̂, ŷ, and ẑ. In
order to create an orthonormal basis out of these vectors, we begin by simply choosing one of them — let’s
say a1 — and normalizing it to obtain the first basis vector e1 in our new basis:

e1 =
a1

||a1||
=

1√
22 + 12 + 02




2
1
0



 =
1√
5




2
1
0



 . (9.67)

Now we need to find a set of additional vectors which are orthogonal to e1. The easiest way of doing this is
to choose another vector — say, a2 — from our original set and subtract off the piece of this vector which
is in the direction along e1. This piece is just (e1 · a2)e1, so we have

a2 − (e1 · a2)e1 =




2
3
0


− 1√

5

(
2 · 2 + 1 · 3 + 0 · 0

)
=

1√
5




2
1
0


 =

4

5



−1
2
0


 . (9.68)

All we need to do in order to obtain our second basis vector a2 is normalize:

e2 =
a2 − (e1 · a2)e1
||a2 − (e1 · a2)e1||

=
1√

(−1)2 + 22 + 02



−1
2
0


 =

1√
5



−1
2
0


 . (9.69)

Our third vector must be orthogonal to both e1 and e2. Once again, the easiest way to do this is to take
our remaining vector a3 and subtract off the pieces which are in the directions along both e1 and e2:

a3 − (e1 · a3)e1 − (e1 · a3)e1 =




1
1
7


− 3

5




2
1
0


− 1

5



−1
2
0


 =




0
0
7


 . (9.70)

Normalizing the result gives us the third and final basis vector e3 in our orthonormal basis:

e3 =
a3 − (e1 · a3)e1 − (e2 · a3)e2
||a3 − (e1 · a3)e1 − (e2 · a3)e2||

=




0
0
1


 . (9.71)

In summary, we started with the three vectors in Eq. (9.66) and derived an orthonormal basis which comprises
the vectors

a1 =
1√
5




2
1
0


 , a2 =

1√
5



−1
2
0


 , a3 =




0
0
1


 . (9.72)

You can verify for yourself that indeed these vectors indeed constitute an orthonormal basis.

The above calculation is an example of the Gram-Schmidt procedure in action. Basically, this recursive
procedure consists of picking a vector from our original set, subtracting off the pieces of this vector which
are parallel to any of the new basis vectors we’ve already derived, and normalizing the result. In general, if
we begin with a set of N linearly-independent vectors |αn〉 with n = 1, 2, . . . , N which span the space, the
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Gram-Schmidt procedure yields the following set of basis vectors:

|e1〉 =
|a1〉
||α1||

|e2〉 =
|a2〉 − |e1〉〈e1|a2〉√
||α2||2 − |〈e1|a2〉|2

|e3〉 =
|a3〉 − |e1〉〈e1|a3〉 − |e2〉〈e2|a3〉√
||α3||2 − |〈e1|a3〉|2 − |〈e1|a3〉|2

...

|e3〉 =
|aN 〉 −

∑N−1
n=1 |en〉〈en|aN 〉√

||α3||2 −
∑N−1

n=1 |〈en|aN 〉|2
(9.73)

Computing the orthonormal basis of vectors in Eq. (9.72) in the above example might seem somewhat
silly or unnecessary. After all, the vectors Eq. (9.66) were already expressed in terms of an orthonormal basis
— namely, the standard basis for vectors in R3 in which the basis vectors are x̂, ŷ, and ẑ. However, this
fact actually highlights an important aspect of the Gram-Schmidt procedure. This procedure is guaranteed
to give you an orthonormal basis, but not necessarily any particular orthonormal basis.

On a final note, while the definition of the inner product presented in this section may once again seem a
trifle abstract, it also conforms to our notion of what a vector product should be. In particular, for vectors
in R

2 or R3, the inner product corresponds to our familiar notion of the dot product.8 For example, the dot
product

a · b = axbx + ayby + azbz . (9.74)

of two vectors a and b in R3 satisfies all of the criteria for an inner product because the components of
a vector in R

3 are real by definition. However, the definition of an inner product can be extended to a
far broader class of operations in different kinds of vector spaces. For example, in vector spaces where the
vectors are functions f(x) defined on some interval from a < x < b, the definite integral

〈f |g〉 ≡
∫ b

a

f∗(x)g(x)dx (9.75)

satisfies all requirements for an inner product as well.

9.6 Matrices

Matrices provide a compact way of representing transformations on the vectors in vector spaces — including
transformations from one basis to another. Structurally, a matrix is simply a rectangular array of numbers,
called the entries of the matrix. These entries may in general be either real or complex. A matrix consisting
of m rows and n columns is referred to as an m× n matrix. For example, the matrix

A =

(
2 −1 3i

2 + 2i 4 −3

)
(9.76)

is a 2× 3 matrix. A matrix which is has the same number of rows and columns is sometimes referred to as
as square matrix.

Complex Conjugate:
The complex conjugate A∗ of a matrix A is the matrix whose individual elements are the complex

conjugates of the corresponding elements of A. In other words,

[A∗]ij = A∗
ij . (9.77)

8If you’re wondering about the cross product — the other familiar vector product from R3, which combines two vectors
together to yield something like a vector — this is an example of a different sort of product called an outer product with very
different properties. We won’t be dealing with outer products in this chapter, but they are an interesting subject in their own
right.
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For example, the complex conjugate of the 2 matrix

A =

(
1 2i 2

3− 2i −2 −3i

)
(9.78)

is the matrix

A∗ =

(
1 −2i 2

3 + 2i −2 3i

)
. (9.79)

The transpose of a matrix, usually denoted AT , is the matrix with the rows and columns of the original
matrix A exchanged. In other words, the transpose of A is the matrix whose elements are given by

[
AT
]
ij

= Aji . (9.80)

This means that the transpose of an m× n matrix is an n×m matrix.

Hermitian Conjugate:
The Hermitian conjugate (sometimes also called the “conjugate transpose” or “Hermitian adjoint”)

of a matrix, usually denoted A†, is the transpose of the complex conjugate of that matrix. The elements of
the Hermitian conjugate are given by [

A†]
ij

= A∗
ji . (9.81)

Once again, as with the transpose, the Hermetian conjugate of an m × n matrix is an m × n matrix. This
means that it is possible for a square matrix to be equal to its own Hermitian conjugate — i.e., for the
matrix to satisfy the criterion

A† = A (Hermitian) . (9.82)

. A matrix for which satisfies this criterion is called a Hermitian matrix. Likewise, a matrix which satisfies
the criterion

A† = −A (anti-Hermitian) (9.83)

is called an anti-Hermitian

indexanti-Hermitian matrix (or sometimes “skew Hermitian”) matrix.

Trace:
The trace of a matrix is only defined for square matrices — i.e., matrices which have the same number

of rows and columns. The trace of a matrix is the sum of its diagonal elements:

Tr(A) =
∑

i

Aii . (9.84)

For example, the trace of the matrix

A =




2 −1 4
3 0 −6
−1 5 −3



 (9.85)

is simply
Tr(A) = 2 + 0− 3 = − 1 . (9.86)

Determinant:
The determinant of a matrix, like the trace, is only defined for matrices which have the same number

of rows and columns. The determinant is a scalar (i.e., a number), usually denoted det(A). The rules for
computing determinants are as follows. First of all, the determinant of a 1 × 1 matrix (i.e., a number) is
equal to the sole element A11 of that matrix (i.e., the number itself). For any n × n matrix with n > 1,
there is a general procedure for computing the determinant. This procedure is called the Laplace expansion
in terms of minors, and it proceeds via the following steps:
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1. Choose one row of the matrix A.

2. For each element Aij in that row, write down the sum-matrix obtained by crossing out the ith row
and the jth column of A. The determinant Mij of this sub-matrix is called the minor of Aij .

3. The determinant of the matrix A is given by

det(A) =
∑

j

(−1)i+jAijMij . (9.87)

Often, for sake of convenience, the factor (−1)i+j and the minor Mij are often combined together into what
is called the cofactor Cij of the element Aij :

Cij ≡ (−1)i+jMij . (9.88)

Thus, the determinant of A can be written in the form

det(A) =
∑

j

AijCij . (9.89)

As an example, let’s begin by computing the determinant of a general 2× 2 matrix of the form

A =

(
A11 A12

A21 A22

)
. (9.90)

When a matrix expressed as array of elements, the determinant is usually denoted by replacing the paren-
theses that typically enclose the array with a pair of vertical lines:9

det(A) =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ . (9.91)

The first step in the Laplace expansion is to choose a row of the matrix, so we’ll choose the first row. Next,
we need to compute the respective minors M11 and M12 of the elements A11 and A12 in this row. In this
case, however, this because the “sub-matrices” obtained by crossing out the ith row and jthe column of the
matrix for our chosen Aij are just the individual elements A22 and A21:

i = 1, j = 1 :

(
A11 A12

A12 A22

)
−→ A22

i = 1, j = 2 :

(
A11 A12

A12 A22

)
−→ A21 , (9.92)

The determinant of a 1 × 1 matrix is just the the sole element of that matrix, as discussed above, so the
minors are just M11 = A22 and M21 = A21 and athe corresponding cofactors are

C11 = (−1)1+1A22 = A22

C12 = (−1)1+2A21 = − A21 . (9.93)

The determinant of the 2× 2 matrix A is therefore

det(A) =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ = A11A22 −A12A21 . (9.94)

Now let’s consider a slightly more complicated example, namely the determinant

det(A) =

∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
(9.95)

9This notation might superficially resemble an absolute-value sign around the matrix, but don’t read too much into that.
The determinant of a matrix is not an “absolute value” of the matrix in any sense. For example, the determinant of a matrix
can be negative.
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of a 3 × 3 matrix. As always, we must begin by choosing a row, and we’ll once again choose the first row.
The sub-matrices obtained by crossing out the ith row and jthe column of the matrix are

i = 1, j = 1 :




A11 A12 A13

A12 A22 A23

A31 A32 A33


 −→

(
A22 A23

A32 A33

)

i = 1, j = 2 :




A11 A12 A13

A12 A22 A23

A31 A32 A33


 −→

(
A21 A23

A31 A33

)

i = 1, j = 3 :




A11 A12 A13

A12 A22 A23

A31 A32 A33



 −→
(

A21 A22

A31 A32

)
, (9.96)

The minorsM11, M12, and M13 are the respective determinants of these matrices 2×2 matrices. However, we
already know how to evaluate the determinant of a 2× 2 matrix. Therefore, determining the corresponding
cofactors is simply a matter of plugging each of the sub-matrices above into Eq. (9.94):

C11 = (−1)1+1

∣∣∣∣
A22 A23

A32 A33

∣∣∣∣ = A22A33 −A23A32

C12 = (−1)1+2

∣∣∣∣
A21 A23

A31 A13

∣∣∣∣ = −
(
A21A33 −A23A31

)

C13 = (−1)1+3

∣∣∣∣
A21 A22

A31 A32

∣∣∣∣ = A21A32 −A22A31 . (9.97)

Substituting these results into Eq. (9.89), we find that the determinant of any 3 × 3 matrix is given by the
general formula

det(A) = A11

(
A22A33 −A23A32

)
−A12

(
A21A33 −A23A31

)
+A13

(
A21A32 −A22A31

)
. (9.98)

Figure 9.6: The absolute value | det(A)| of the determinant of a 2 × 2 matrix A represents the area of
the parallelogram constructed from the vectors a = (A11, A12) and b = (A21, A22), which is shown in the
left panel. The Likewise, the absolute value | det(A)| of the determinant of a 3 × 3 matrix A represents
the area of the parallelepiped constructed from the vectors a = (A11, A12, A13), b = (A21, A22, A23), and
c = (A31, A32, A33), which is shown in the right panel.

The intuitive meaning of the determinant may not be immediately obvious from this definition. However,
the determinant does have a direct geometrical interpretation. The absolute value |det(A)| of the determinant
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of a 2×2 matrix with elements Aij is equal to the area of the parallelogram constructed from the two vectors

a =

(
A11

A12

)
, b =

(
A21

A22

)
(9.99)

as shown in the left panel of Fig. 9.6. Likewise, The absolute value |det(A)| of the determinant of a 3 × 3
matrix with elements Aij is equal to the area of the parallelepiped constructed from the three vectors

a =




A11

A12

A13


 , b =




A21

A22

A23


 , c =




A31

A32

A33


 (9.100)

as shown in the right panel of Fig. 9.6. In general, the absolute value of the determinant of an n× n matrix
A represents the volume of the n-dimensional paralellepiped constructed from a set of n vectors, where the
components of each vector are given by the elements in a particular row of A.

9.7 Operations on Matrices

In the Sect. 9.6, we discussed some of the general properties of matrices, including the determinant and
the trace. In this section, we turn to consider what kinds of mathematical operations we can perform on
matrices.

The first operation that we will consider is matrix addition. Two matrices can be added together if and
only if they have the same number of rows m and the same number of columns n. The sum of two m × n
matrices A and B is another m× n matrix C whose elements are given by Cij = Aij + Bij . For example,
the sum of the 3× 2 matrices is

A =




1 −i
2 4

1 + i 2



 , B =




0 1
−2 2i
−3 −2



 (9.101)

is the matrix 


1 −i
2 4

1 + i 2



 +




0 1
−2 2i
−3 −2



 =




1 1− i
0 4 + 2i

−2 + i 0



 . (9.102)

The rules for subtracting matrices are completely analogous. For example,




1 −i
2 4

1 + i 2


−




0 1
−2 2i
−3 −2


 =




1 −1− i
4 4− 2i

4 + i 4


 . (9.103)

In addition to adding and subtracting matrices, we can also multiply matrix by a scalar or by another
matrix. The product cA of a scalar c with a matrix A and is another matrix B with elements Bij = cAij .
For example,

2

(
2 −1
5 3i

)
=

(
4 −2
10 6i

)
. (9.104)

The product AB of two matrices A and B is only defined when the number of rows in the matrix A is
equal to the number of columns in the matrix B. When A is an m× p matrix and B is a p× n B matrix,
their product

C = AB (9.105)

is an m× n matrix whose elements are given by

Cij =

p∑

k=1

AikBkj . (9.106)
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Note that order matters when multiplying matrices. We are used to the multiplication of two numbers
together being commutative in the sense that ab = ba. By contrast, for matrices, AB is not necessarily
equal to BA. Moreover, it is possible for AB to be well-defined and for BA not to be defined at all!
However, matrix multiplication is associative in the sense that

A(BC) = (AB)C . (9.107)

Furthermore, it’s easy to verify that the transpose of the product of two matrices is the product of the
transposes in the reverse order:

(AB)
T

= BTAT . (9.108)

An analogous property also holds for the Hermitian conjugate of a product of two matrices, since the
Hermitian conjugate is just the complex conjugate of the transpose:

(AB)† = B†A† . (9.109)

As an example of how this matrix-multiplication procedure works, let’s calculate the product AB of the
two matrices

A =

(
3 0 −1
2 −2 0

)
, B =




1 0
−1 4
0 2


 . (9.110)

Since A is a 2× 3 matrix and B is a 3× 2 matrix, this product is well-defined and given by the 2× 2 matrix

(
3 0 −1
2 −2 0

)


1 0
−1 4
0 2



 =

(
3 · 1 + 0 · (−1) + (−1) · 0 3 · 0 + 0 · 4 + (−1) · 2
2 · 1 + (−2) · (−1) + 0 · 0 2 · 0 + (−2) · 4 + 0 · 2

)

=

(
3 −2
4 −8

)
. (9.111)

In this example, the product of these matrices BA in the reverse order is also well-defined (see Problem 6),
but AB 6= BA.

The same rules that govern the multiplication of two matrices together can also be used to multiply
matrices and vectors together. In particular, let’s say that I have chosen a basis and can therefore express
any vector |α〉 in my vector space as a column of numbers, as in Eq. (9.51). Such an array can be viewed
as an n× 1 matrix a whose elements ai are the components of the vector in that basis. The product of an
m× n matrix M with such a vector is therefore given by

b = Ma , (9.112)

where b is an m×1 matrix — i.e., another column of numbers. The m components bi of this array are given
by Eq. (9.106):

bi =
m∑

j=1

Mijaj . (9.113)

This formula is quite general and applies to the multiplication of any n × 1 column vector by any m × n
matrix. However, in order for the resulting array b to correspond to another vector in the same vector space
as a, it must have the same number of components as a. Thus, in order for b to have any possibility of being
a vector in the same vector space, M must be a square matrix with m = n.

Not only can we use the rules that govern matrix multiplication to multiply a matrix by a vector, but
we can also use them to recast the expression in Eq. (9.65) for the inner product of two vectors as a matrix
product. In particular, let’s say that we have two vectors a and b expressed as n× 1 arrays of the “column-
vector” form given in Eq. (9.51) with respect to some orthonormal basis. The Hermitian conjugate a† of the
vector a is a 1× n matrix — a “row vector,” if you will — components

a† =
(
a∗
)T

=
(
a∗1 a∗2 . . . a∗n

)
. (9.114)
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Since the array a† is a 1×n matrix and b is an n× 1 matrix, the product a†b is well-defined. In particular,
it’s a 1× 1 “matrix” — i.e., a single number or scalar — whose sole component is given by

a†b =
(
a∗1 a∗2 . . . a∗n

)




b1
b2
. . .
bn


 = a∗1b1 + a∗2b2 + . . . a∗nbn . (9.115)

The expression on the right-hand side matches the result for for the inner product of two vectors in an
orthonormal basis in Eq. (9.65). This means that if we’re working in such a basis, we can always express
the inner product of two vectors in the language of matrix multiplication. As we shall see in Sect. 9.8, the
ability to do this comes in handy whenever one is using matrices to perform transformations on vectors.

The division of one number by another is not an operation for which for there is a straightforward parallel
for matrices. However, there is an operation for n × n matrices which functions as an inverse operation to
matrix multiplication in a sense that performing this operation will “undo” the action of multiplying one
such matrix B by another such matrix A. This operation consists of multiplication by a different matrix
A−1, called the inverse of A, defined such that

A−1(AB) = B . (9.116)

So how do we find the inverse matrix A−1 for a given matrix A? In order to answer this question, it is
helpful to begin by introducing one additional concept: identity matrix. The identity matrix In×n is an
n×n matrix whose entries are given by Iij = δij . In other words, all of the diagonal elements in the identity
matrix are equal to 1 and all the off-diagonal elements are equal to zero. For example, the 3 × 3 identity
matrix is

I3×3 =




1 0 0
0 1 0
0 0 1



 . (9.117)

This matrix has the special property that for any n× n matrix A,

In×nA = AIn×n = A , (9.118)

which can be verified directly using Eq. (9.106). In other words, In×n has the same fundamental properties
under matrix multiplication that the number 1 has under scalar multiplication.

As we discussed above, the inverse matrix A−1 which satisfies Eq. (9.116) for any n×n matrix B. Since
matrix multiplication is associative, we have

(
A−1A

)
B = B , (9.119)

which implies that

AA−1 = In×n . (9.120)

The elements of A−1, if such a matrix exists, are given by

[
A−1

]
ij

=
1

det(A)
Cji , (9.121)

where Cji is the cofactor of the element Aji of A, as defined in Eq. (9.88). Note that the indices i and j in
Cji are reversed on the right-hand side of this equation relative to the left-hand side.

However, not every square matrix has an inverse. In particular, we can see that the denominator on
the right-hand side of Eq. (9.121) blows up whenever det(A) = 0. Indeed, it turns out that a matrix has
a well-defined inverse if and only if det(A) 6= 0. Such a matrix is called an invertable matrix. A matrix
whose determinant vanishes and therefore cannot be inverted is called a singular matrix.

Finally, there is even a sense in which matrices can be used as the arguments of functions. What exactly
it means for a function to take a matrix as an argument may not be obvious, but there is a straightforward
and unambiguous prescription for evaluating functions with such arguments. In particular, a function f(A)
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whose argument is a matrix is to be evaluated according to its Taylor-series expansion. For example, the
Taylor-series expansion of the exponential ea of a scalar a is

ea = 1 + a+
1

2!
a2 +

1

3!
a3 + . . . (9.122)

The Taylor-series expansion of the exponential of an n × n matrix A is defined in a completely analogous
way:

eA = In×n +A+
1

2!
AA+

1

3!
AAA+ . . . (9.123)

Note that the sum which appears on the right-hand side of this equation represents another n× n matrix.
Other functions of a matrix, including trigonometric functions, logarithms, etc., are defined in a similar
manner.

Example:

Let’s evaluate the matrix exponential eiθσ1 , where θ is a scalar and where

σ1 =

(
0 1
1 0

)
. (9.124)

The Taylor series for the exponential of a matrix was given in Eq. (9.123). Here, the matrix appearing in
the exponential is the product iθσ1 of the scalar iθ and the matrix σ1, so we have

eiθσ1 = I2×2 + iθσ1 +
(iθ)2

2!
σ1σ1 +

(iθ)3

3!
σ1σ1σ1 + . . . (9.125)

The product of two σ1 matrices with each other turns out to be the identity matrix:

σ1σ1 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I2×2 . (9.126)

This, in turn, means that the product of three σ1 matrices is just I2×2σ1 = σ1, the product of four σ1

matrices is σ1, and so on. In other words, the product of any odd number of σ1 matrices is σ1, while the
product of and even number of σ1 matrices is I2×2. Thus, we have

eiθσ1 = I2×2

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ σ1

(
iθ − i

θ3

3!
+ i

θ5

5!
− . . .

)

= I2×2 cos θ + iσ1 sin θ

=

(
cos θ i sin θ
i sin θ cos θ

)
(9.127)

9.8 Matrices and Transformations of Vectors

In Sect. 9.7, we saw that the product of an n× n matrix A and an n× 1 matrix a is another n× 1 matrix
b with components bi given by Eq. (9.113). Let’s consider the case in which the elements of a represent
the components of a vector in some vector space with respect to some particular basis. Since the resulting
matrix b is a linear combination of the same basis vectors, it follows that b must also be a vector in the
space. This is a very important observation. It means that multiplying a vector by a matrix has the effect
of transforming it into another vector in the same space.

One example of a transformation that can be represented by a matrix is the rotation of a vector in R2

by an angle θ. The matrix R which corresponds to such a (counterclockwise) rotation is

R =

(
cos θ − sin θ
sin θ cos θ

)
. (9.128)
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Figure 9.7: A vector a in R2 and the vector a′ = Ra which results from multiplying a by the matrix in
Eq. (9.128) with θ = π/2. We see that the effect of multiplying a by R is to produce a vector which
corresponds to our original vector rotated counterclockwise in the plane by π/2 radians.

The multiplication of any vector a in the space by this vector yields another vector a′ whose components
are given in terms of the components of the original vector by Eq. (9.113):

a′ = Ra =

(
cos θ sin θ
sin θ cos θ

)(
ax
ay

)
=

(
ax cos θ − ay sin θ
ax sin θ + ay cos θ

)
. (9.129)

We can check that this does in fact correspond to a counterclockwise rotation of our original vector a by
plugging in some explicit values for θ. For example, plugging in θ = π/2 gives us

θ =
π

2
−→ a′ =

(
−ay
ax

)
, (9.130)

which is a vector with components a′x = −ay and a′y = ax, as shown in Fig. 9.7. Indeed, this vector
corresponds to a counterclockwise rotation of our original vector by π/2 radians. Likewise, setting θ = π
yields a vector with components a′x = −ax and a′y = −ay, which corresponds to a rotation of a by π radians.

The rotation of a vector in R2 is an example of a special kind of transformation, called a unitary

transformation. A unitary transformation is a transformation that preserves length. In other words, it’s a
transformation that leaves the norm ||α|| of the original vector |α〉 unchanged. A matrixU which corresponds
to a unitary transformation is called a unitary matrix. 10

Clearly, in order to preserve length, a unitary matrix must possess some special properties. Let’s inves-
tigate a little further exactly what these properties are. If the norm ||α|| =

√
〈α|α〉 of the original vector is

equal to the norm ||α′|| =
√
〈α′|α′〉 of the transformed vector, it must be true that

〈α′|α′〉 = 〈α|α〉 . (9.131)

If we are working in an orthonormal basis, we can use Eq (9.115) to express each side of this equation as a
matrix product:

a′
†
a′ = a†a (9.132)

Moreover, since a = Ua, we have
(
Ua
)†(

Ua
)

= a†U†Ua , (9.133)

10The corresponding noun is “unitarity.”
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where, in the second step, we have used Eq. (9.109) to rewrite the Hemitian conjugate of the matrix product
Ua in terms of the Hermitian conjugates of U and a themselves in the reverse order. Thus, our unitarity
condition in Eq. (9.132) becomes

〈α′|α′〉 = 〈α|α〉 ↔ a′
†
a′ = a†U†Ua = a†a , (9.134)

which implies that
U†U = In×n . (9.135)

Comparing this result with Eq. (9.120), we see that a matrix is unitary if and only if its Hermitian conjugate
is equal to its inverse:

U† = U−1 (Unitary) . (9.136)

.
Another kind of transformation which corresponds to multiplication by a unitary matrix is the conversion

from one orthonormal basis to another. Indeed, changing the basis with respect to which we are writing the
components of a vector shouldn’t alter any of the the fundamental properties of that vector such as its length.
Thus, it stands to reason that such a transformation should be unitary. Moreover, it’s straightforward to
determine what the corresponding matrix U looks like for any such transformation. Let’s call the set of basis
vectors in our original basis |ei〉 and the basis vectors in our new basis |e′i〉. The relationship between the
components a′i of the vector in the new basis and the components ai in the old basis are given by Eq. (9.66):

a′i = 〈e′i|α〉 = 〈e′i|




n∑

j=1

aj |ej〉



 =
N∑

j=1

aj〈e′i|ej〉 . (9.137)

Comparing this expression to Eq. (9.113), we see that this basis transformation is completely equivalent to
multiplying our original vector aj by a matrix whose elements are given by

Uij = 〈e′i|ej〉 . (9.138)

Thus, if we have a vector a whose components are expressed with respect to one orthonormal basis, the
components of the corresponding vector a′ in another basis are given by

a′ = Ua , (9.139)

where the elements of the matrix U are given by Eq. (9.138).
As an example of how this works, let’s take the vector in R2 whose components are given by

a =

(
4
−2

)
(9.140)

in the standard orthonormal basis
e1 = x̂ , e2 = ŷ (9.141)

and re-express this vector in the orthonormal basis

e′1 =
1√
2
(x̂+ ŷ) , e′2 =

1√
2
(x̂ − ŷ) . (9.142)

The matrix which corresponds to this transformation is

U =

(
〈e′1|e1〉 〈e′1|e2〉
〈e′2|e1〉 〈e′2|e2〉

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
=

1√
2

(
1 1
1 −1

)
. (9.143)

First, let’s verify that this matrix is unitary. The Hermetian conjugate of U turns out to be equal to U

itself

U† = [U∗]T =
1√
2

(
1 1
1 −1

)
= U . (9.144)
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Thus, we find that U indeed satisfies Eq. (9.136):

U†U =

(
1√
2

)2(
1 1
1 −1

)(
1 1
1 −1

)
=

1

2

(
2 0
0 2

)
= I2×2 . (9.145)

Now let’s use this unitary matrix to determine the components of the vector from Eq. (9.140) in our new
basis. Rewriting a to this new basis is simply a matter of multiplying a by U gives us, so the corresponding
vector a′ in the new basis is

a′ = Ua =
1√
2

(
1 1
1 −1

)(
4
−2

)
=

1√
2

(
4− 2
4 + 2

)
=

( √
2

3
√
2

)
. (9.146)

In other words, our vector is specified by the linear combination of basis vectors

a′ =
√
2 e′1 + 3

√
2 e′2 . (9.147)

The operation in Eq. (9.139) gives us a prescription for transforming a vector whose components are
expressed with respect to some original basis into a new basis. However, we can also just as easily use this
prescription to transform the resulting vector from the new basis back into to the old one. In particular, to
“undo” this operation and bring ourselves back to the original basis, all we need to do is multiply both sides
of Eq. (9.139) by the inverse U−1 = U† of our unitary matrix:

U†a′ = U†Ua = I2×2a = a . (9.148)

In other words, the transformation which brings us back to the old basis corresponds to multiplication by
the Hermitian conjugate of U:

a = U†a′ (9.149)

We can also use Eq. (9.149) to figure out how a matrices transform when we convert from one basis to
another. For example, let’s say that the product of a matrix A and a vector a gave us the vector b in our
original basis:

b = Aa . (9.150)

To obtain the corresponding equation in a new basis in which a′ = Ua and b′ = Ub, all we need to do is
use Eq. (9.149) to express a and b in terms of a′ and b′

U†b′ = AU†a′ . (9.151)

If we multiply both sides of this equation by U, we get

UU†b′ = b′ = UAU†a′ . (9.152)

Comparing the form of this equation to Eq. (9.150), we see that the matrix which corresponds to A in the
new basis is

A′ = UAU† . (9.153)

This is in fact a general rule which specifies how a matrix transforms under any unitary transformation.

9.9 Eigenvalues and Eigenvectors

It turns out there are often certain choices of basis one can adopt within which equations involving matrices
— for example, equations of the form given in Eq. (9.150) — become particularly simple. For example, a
basis may exist wherein a particular matrix consists entirely of diagonal entries. Clearly, if we can identify
such a basis for any particular matrix, it makes calculations a lot easier. The question, then, is how we go
about finding such a basis — or, for that matter, determining whether one even exists. Fortunately, there
is a method for doing this. This method involves calculating a set of numbers called the eigenvalues of the
matrix, along with a corresponding set of vectors called its eigenvectors. We therefore begin this section
with a discussion of exactly what these quantities are and how to determine them.
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For a given matrix A, there is often a set of vectors bi for which the matrix product of A and bi is just
the vector bi itself multiplied by some overall scalar coefficient λi:

Abi = λibi . (9.154)

The set of vectors bi which have this property for any particular matrix are called the eigenvectors of that
matrix. The corresponding scalars λi are called the eigenvalues. Of course the null vector 0 will always
satisfy this relation, but that’s a bit too trivial — we’re interested in non-trivial solutions to this equation,
and thus 0 is generally excluded from the set of eignevectors for a given matrix.

So how can we find these non-trivial solutions? Moreover, how do we even know such solutions exist
for a given matrix? The first step in answering these questions is to rewrite Eq. (9.154) in a slightly more
revealing form. If we insert the identity matrix on the right-hand side of this equation

Ab = λIn×nb , (9.155)

we can rewrite it in the form (
A− λiIn×n

)
bi = 0 . (9.156)

We can determine whether or not there exist non-trivial solutions to this vector equation using the following
reasoning. Let’s say that the matrix A − λIn×n) in this equation had a well-defined inverse. If that were
true, then we could multiply both sides of the equation by this inverse to obtain

(
A− λiIn×n

)−1(
A− λiIn×n

)
bi = In×nbi = bi =

(
A− λiIn×n

)−1
0 = 0 . (9.157)

In other words, the only solution to Eq. (9.156) is the trivial one, with b = 0. This means that if Eq. (9.156)
is to have non-trivial solutions, the matrix A−λiIn×n must not be invertible. As discussed in Sect. 9.7, this
implies that its determinant must vanish:

det
(
A− λiIn×n

)
= 0 (9.158)

This equation is called the characteristic equation for the matrix A. The eigenvalues λi are the set
of solutions to this equation. To find the corresponding eigenvector bi for each λi, all we need to do is plug
that value of λi back into Eq. (9.156) and solve for the components of bi

Example: Eigenvalues of a Matrix

As an example of how this works, let’s determine the eigenvalues and eigenvectors of the 2× 2 matrix

A =

(
0 1
1 2

)
. (9.159)

The characteristic equation is

det
(
A− λiI2×2

)
=

∣∣∣∣
−λi 1
1 2− λi

∣∣∣∣ = − λi(2 − λi)− 1 = 0 . (9.160)

This is just a quadratic equation for λi, so the eigenvalues of A are the two solutions given by

λi =
−(−2)±

√
22 − 4 · 1 · (−1)
2 · 1 = 1±

√
2 . (9.161)

In other words, the two eigenvalues are

λ1 = 1 +
√
2 , λ2 = 1−

√
2 . (9.162)

The eigenvectors b1 and b2 are the vectors whose components satisfy Eq. (9.156) for λ1 and λ2, respec-
tively. We’ll begin by solving the equation for b1. Let’s call the two components of this vector b1,1 and b1,2.
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The
(

0
0

)
=

[(
0 1
1 2

)
−
(

1 +
√
2 0

0 1 +
√
2

)](
b1,1
b1,2

)

=

(
−1−

√
2 1

1 1−
√
2

)(
b1,1
b1,2

)

=

(
b1,2 − (1 +

√
2)b1,1

b1,1 + (1−
√
2)b1,2

)
. (9.163)

This is equivalent to the system of equations

−(1 +
√
2)b1,1 + b1,2 = 0

b1,1 + (1 −
√
2)b1,2 = 0 . (9.164)

The solution to this system of equations is b1,1 = −1 +
√
2 and b1,2 = 1, so the eigenvector associated with

the eigenvalue λ1 is

b1 =

( √
2− 1
1

)
. (9.165)

The procedure for finding the eigenvector b2 associated with the eigenvalue λ2 is completely analogous. The
result is

b2 =

(
−
√
2− 1
1

)
. (9.166)

It’s worth noting that the two eigenvectors b1 and b2 are not only linearly independent, but actually
orthogonal:

b1 · b2 =
(√

2− 1
)(
−
√
2− 1

)
+ 12 = 0 . (9.167)

Thus, we can form an orthonormal basis out of these eigenvectors simply by normalizing them. In this basis,
the eigenvectors are

e′1 =
b1

||b1||
=

1
[
4− 2

√
2
]1/2

( √
2− 1
1

)

e′2 =
b2

||b2||
=

1
[
4 + 2

√
2
]1/2

(
−
√
2− 1
1

)
. (9.168)

In the above example, we found that our 2× 2 matrix had two distinct eigenvalues λ1 and λ2. Moreover,
the corresponding eigenvectors even turned out to be linearly independent, to be orthogonal, and to span
the space. Indeed, all we had to do in order to construct an orthonormal basis out of them was to normalize
them. It is not always the case that an n×n matrix has n distinct eigenvalues, however, much less that they
turn out to be orthogonal. Indeed, the eigenvalues of a matrix can be degenerate, meaning that two or more
distinct eigenvectors correspond to the same eigenvalue. Moreover, an n × n matrix need not necessarily
have n distinct eigenvectors either; rather, it may have any number of eigenvectors from one — and there
will always be at least one — up to n.

However, there is a broad class of matrices which are guaranteed to have n linearly-independent, orthog-
onal eigenvectors which span the vector space. Matrices in this class are called normal matrices. It turns
out that any matrix which satisfies the condition

AA† −A†A = 0 (9.169)

is a member of this class. For example, Eq. (9.135) implies that every unitary matrix is a normal matrix
because

UU† −U†U = I2×2 − I2×2 = 0 . (9.170)

In addition, any Hermetian or anti-Hermetian matrix is normal, as is any real symmetric matrix. There
are plenty of other examples as well. Since the eigenvectors for a normal matrix are linearly independent,
spanning, and orthogonal, we can always use them to construct an orthonormal basis.



9.10. COUPLED DIFFERENTIAL EQUATIONS AS MATRIX EQUATIONS 147

Why is it significant or useful that the set of eigenvectors of a matrix form an othonormal basis? In order
to answer this, let’s return to the above example in which we constructed an orthonormal basis out of the
eigenvalues of the matrix A in Eq. (9.159). Let us now ask ourselves what the matrix A would look like if
we transformed it into this new basis. Calculating the unitary matrix U which takes us from our original
basis

e1 =

(
1
0

)
, e2 =

(
0
1

)
(9.171)

to the basis defined in Eq. (9.168) is straightforward. Its elements Uij are given by Eq. (9.138), so we have

U =




√
2−1

[4−2
√
2]1/2

1
[4−2

√
2]1/2

−
√
2−1

[4+2
√
2]1/2

1
[4+2

√
2]1/2


 . (9.172)

The matrix which corresponds to A′ in the new basis is given by substituting this result into Eq. (9.153).
You can verify for yourself that the resulting expression for A′ ultimately reduces to

A′ = UAU† =

(
1 +
√
2 0

0 1−
√
2

)
. (9.173)

Apparently, in this special basis, the matrixA′ is a diagonal matrix whose diagonal entries are the eigenvalues
of our original matrix! Clearly, working in this special basis — often called the eigenbasis of the matrix A

— definitely has its advantages.
This example is in fact an illustration of a general property of normal matrices — and an exceedingly

useful one. Whenever we make a change of basis to the eigenbasis of a normal matrix A, the corresponding
matrix A′ will always be purely diagonal. In particular, the diagonal entries A′

ii of A
′ in this basis are given

by the eigenvalues of the original matrix. In other words, the elements of A′ are given by

A′
ij = λiδij . (9.174)

For this reason, the procedure of converting our original matrix A into this special basis is called diagonal-

ization.

9.10 Coupled Differential Equations as Matrix Equations

For example, let’s return to the coupled-oscillator system from Sect. 9.2 and see how we can describe this
system using the language of linear algebra. The state of the system at any given moment is completely
described by a pair of coordinates x1 and x2 which describe positions of the two blocks. We can view these
two position coordinates as the components of a vector

x =

(
x1

x2

)
(9.175)

in an abstract, two-dimensional vector space.11 Specifically, x1 and x2 are the components of this vector
with respect to an orthonormal basis in which the basis vectors are

e1 =

(
1
0

)
, e2 =

(
0
1

)
. (9.176)

Each vector x in this vector space specifies a unique configuration of the positions of the individual blocks.
I will therefore refer to this vector as the “configuration vector” for the system.12

Two examples of vectors in this abstract vector space are shown in Fig. 9.8, along with the physical
configurations of the blocks to which each vector corresponds.

11Since the coordinates x1 and x2 are real-valued, this vector space is equivalent to R2. Admittedly, not every choice of these
coordinates is physically sensible For example, if the distance between the equilibrium positions of the two blocks is d, any
vector with x1 > x2 + d is physically nonsensical because it corresponds to the block with coordinate x1 lying to the right of
the block with coordinate x2. This does not mean that the space fails to satisfy the criteria for a vector space (e.g., closure).
Mathematically speaking, the space is still R2. Rather, we just need to be careful that we are operating within a physically
sensible region of this space.

12I use the word “configuration” rather than “state” to describe this set of positions because the word “state” is typically
reserved for a set of both position and momentum coordinates together.
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←→

←→

Figure 9.8: An illustration of how the overall position configuration of a two-oscillator system can be repre-
sented as a vector in a two-dimensional vector space. It is convenient to work in the (orthonormal) basis in
which the components of the vector correspond to the two position coordinates x1 and x2 of the individual
oscillators. The top panel shows the vector a = (−2, 3) in this abstract space, along with an illustration of the
corresponding physical configuration of the blocks. Likewise, the bottom panel shows the vector b = (2, 1)
in the same abstract space, along with an illustration of the corresponding physical configuration.

Another advantage of our coupled-oscillator system as a vector also allows us to write the equations of
motion for x1 and x2 in a much more compact form. In particular, we can combine Eqs. (9.1) and (9.2) into
a single matrix equation:

m
d2

dt2

(
x1

x2

)
=

(
−2k k
k −2k

)(
x1

x2

)
. (9.177)

This equation can be viewed as merely a repackaging of the equations of motion for the coordinates x1 and x2

using matrix notation. However, it can also be viewed as an equation of motion for the overall configuration
vector x.

m
d2

dt2
x = kMx , (9.178)

where we have defined

M =

(
−2 1
1 −2

)
. (9.179)

The fact that our original differential equations for x1 and x2 were coupled is reflected in the fact that this
matrix is not diagonal. It is the off-diagonal elements of M that “mix” the different components so that the
derivative of on component of our configuration vector depends on the value of the other. If, on the other
hand, the matrix had been diagonal, then the equations for the two components would have decoupled and
we could have solved each of these equations separately.
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However, one of the crucial lessons from Sect. 9.9 is that there exists a basis we can choose in which
the matrix is diagonal and the corresponding equations for the components do decouple. That basis is the
eigenbasis of the matrix M. Indeed, M is a real symmetric matrix. All real symmetric matrices are normal
matrices, as we saw in Sect. 9.9, so we know that there exists a basis in which M is purely diagonal. Once we
identify that basis, we can decouple the equations of motion by performing a basis transformation. Then the
system can be solved. Of course the result won’t be a surprise, since we already know what the solutions look
like from Sect. 9.2. However, in contrast with the trick we used there to obtain those solutions, the method
we will walk through below can be applied to nearly any coupled system of physical interest. Moreover, it
will shed a lot more light on many of the concepts to which we were introduced in Sect. 9.2 — including the
concept of normal modes.

Finding the basis vectors for the basis in which M is diagonal is simply a matter of finding the eigenvalues
and eigenvectors of this matrix. The first step is to determine the eigenvalues by solving the characteristic
equation

det
(
M− λI2×2

)
= 0 , (9.180)

where λ represents either of the two eigenvalues of M. Evaluating the determinant gives us

∣∣∣∣
−2− λ 1

1 −2− λ

∣∣∣∣ = (−2− λ)2 − (−1)2 = λ2 + 4λ+ 32 = 0 . (9.181)

The solutions λ± to this quadratic equation are

λ± =
−4±

√
42 − 4 · 1 · 3
2 · 1 =

−4±
√
4

2
= − 2± 1 . (9.182)

In other words, the eigenvalues of M are

λ+ = − 1 , λ− = − 3 . (9.183)

The next step is to determine the eigenvectors e+ and e−, which represent the respective solutions to
the equations (

M − λ±I2×2

)
e± = 0 . (9.184)

Explicitly, for e+, we have (
−2 + 1 1

1 −2 + 1

)(
e+,1

e+,2

)
= 0 , (9.185)

where e+,1 and e+,2 are just the components of e+ with respect to our original basis. This matrix relation
corresponds to the system of equations

−e+,1 + e+,2 = 0

e+,1 − e+,2 = 0 . (9.186)

These two equations are redundant; any pair of numbers for which e+,1 = e+,2 is a solution to the system.
However, since we want to construct an orthonormal basis from e±, we’ll choose e+,1 = e+,2 = 1/

√
2 so that

e+ is normalized:

||e+|| =

√(
1√
2

)2

+

(
1√
2

)2

= 1 . (9.187)

Similarly, for x−, we have (
−2 + 3 1

1 −2 + 3

)(
e−,1

e−,2

)
= 0 , (9.188)

which corresponds to the system of equations

e−,1 + e−,2 = 0

e−,1 + e−,2 = 0 . (9.189)
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These equations are once again redundant; any pair of numbers for which e−,1 = −e−,2 is a solution. We’ll
choose e−,1 = 1/

√
2 and e−,2 = −1/

√
2 so that we have ||e−|| = 1. In summary, then, the normalized

eigenvectors which correspond to the eigenvalues in Eq. (9.190) are

e+ =
1√
2

(
1
1

)
, e− =

1√
2

(
1
−1

)
(9.190)

with respect to the original basis in Eq. (9.176).
Now that we’ve found the eigenbasis for M, let’s see what the equation of motion in Eq. (9.178) looks

like in this new basis. Ww know that the configuration vector x′ in the new basis in Eq. (9.190) and the
configuration vector x in the original basis in Eq. (9.176) are related by x = U†x′, where U is a unitary
matrix. The elements of U are given by Eq. (9.138), so we have

U =
1√
2

(
1 1
1 −1

)
. (9.191)

Replacing x with Ux′ in Eq. (9.178) gives us

m
d2

dt2
(
U†x′) = kMU†x′ . (9.192)

The elements of U† are all just constants, so we can pull this matrix through the derivative operator:

mU† d2

dt2
x′ = kMU†x′ . (9.193)

Multiplying both sides of this equation by U, we have

mUU† d2

dt2
x′ = m

d2

dt2
x′ = kUMU†x′ . (9.194)

The matrix M′ ≡ UMU† on the right side of Eq. (9.194) is just a diagonal matrix whose diagonal entries
are λ+ and λ−:

M′ = UMU† =
1

2

(
1 1
1 −1

)(
−2 1
1 −2

)(
1 1
1 −1

)
=

(
−1 0
0 −3

)
. (9.195)

The expression x′ for the configuration vector in this new basis can likewise be found by multiplying x

by the transformation matrix U:

x′ = Ux =
1√
2

(
1 1
1 −1

)(
x1

x2

)
=

1√
2

(
x1 + x2

x1 − x2

)
. (9.196)

Substituting the expressions in Eqs. (9.195) and (9.196) back into Eq. (9.194) and canceling the overall factor
of 1/

√
2 from both sides and using the notation x± = x+± x− we defined back in Sect. 9.2, we find that the

equation of motion for the configuration vector in our new basis is

d2

dt2

(
x+

x−

)
=

k

m

(
−1 0
0 −3

)(
x+

x−

)
. =

(
−ω2

+ 0
0 −ω2

−

)(
x+

x−

)
, (9.197)

where ω+ and ω− are the frequencies we defined in Eq. (9.8) for the normal modes of the system.
Now let’s pause a moment to reflect on what this equation means. First of all, the components of the

configuration vector in this basis are nothing but the coordinates x+ and x− that we obtained in Sect. 9.2
by adding and subtracting x1 and x2! In other words, the two basis vectors e+ and e− correspond to the
two normal modes of oscillation for the system with frequencies ω+ and ω−, respectively.

Second, as anticipated, we see that Eq. (9.197) is diagonal in this basis. In other words, we have decoupled
the differential equations for the different components of our configuration vector by diagonalizing M. The
individual equations for x+ and x− can be read off from Eqn. 9.197:

d2x+

dt2
= −ω2

+x+

d2x−
dt2

= −ω2
−x− (9.198)
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The solutions are those given in Eq. (9.7) of course, but the point is that we could have obtained these
solutions via this method had we not known them already.

Third and finally, we emphasize again that the diagonalization method that we used here to decouple the
equations of motion for our coupled-oscillator system is applicable to a broad variety of coupled systems.

Example: More Modes

Figure 9.9: A coupled-oscillator system consisting of five blocks, each of mass m, connected to each other
and to a pair of fixed walls by a set of springs, each with spring constant k.

We’ve now seen how to solve a system comprising two coupled oscillators — but why stop at two? For
example, let’s consider a coupled-oscillator system consisting of five blocks coupled together by a set of
springs, as shown in Fig. 9.9. The system can be characterized by a set of position coordinates xn, where
n = 1, 2, . . . , 5, each of which represents the displacement of a different block away from its equilibrium
position. The force Fn on any particular block receives a contribution from both the spring on its left and
the spring on its right. Thus, Newton’s Second Law yields an equation of motion

m
d2xi

dt2
= Fn = −k(xi − xi−i) + k(xn+1)− xn)

= −2kxn + kxn+1 + kxn−1 (9.199)

for each block. These five coupled equations can be combined into the single matrix equation

d2

dt2




x1

x2

x3

x4

x5




= ω2
0




−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2







x1

x2

x3

x4

x5




, (9.200)

where we have defined ω0 ≡
√
k/m. Solving the system is therefore a matter of diagonalizing the matrix

M =




−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2




. (9.201)

Once again, just as we did for the two-oscillator systems, we begin by finding the eigenvalues of M. The
characteristic equation is

det
(
M− λI5×5

)
=

∣∣∣∣∣∣∣∣∣∣

−2− λ 1 0 0 0
1 −2− λ 1 0 0
0 1 −2− λ 1 0
0 0 1 −2− λ 1
0 0 0 1 −2− λ

∣∣∣∣∣∣∣∣∣∣

= 0 . (9.202)

This determinant is slightly more cumbersome to solve than the determinant of a 2× 2 matrix, but it can be
evaluated using the method of relative minors nonetheless. The resulting equation involves a quintic (i.e.,
fifth-degree) polynomial:

λ5 + 10λ4 + 36λ3 + 56λ2 + 35λ+ 6 = 0 . (9.203)
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The solutions to this equation are

λ1 = −2 +
√
3

λ2 = −1
λ3 = −2
λ4 = −3
λ5 = −2−

√
3 . (9.204)

The corresponding normalized eigenvectors en are the solutions to the equation

(
M− λnI5×5

)
en = 0 (9.205)

with ||en|| = 1. Physically, the en represent the normal modes of the system — i.e., the independent ways
in which the oscillators in the system can be excited. Expressed in terms of their components in the original
basis, these eigenvectors turn out to be

e′1 =
1

2
√
3




1√
3
2√
3
1




, e′2 =
1

2




−1
−1
0
1
1




, e′3 =
1√
3




1
0
−1
0
1




e′4 =
1

2




−1
1
0
−1
1




, e′5 =
1

2
√
3




1

−
√
3

2

−
√
3

1




. (9.206)

It’s important to keep in mind what the components of these basis vectors represent. The jth component
e′n,j of the vector e′n tells us proportionally how large the amplitude of oscillation for a particular block is
when the corresponding mode of oscillation is excited. For example, if only the n = 2 mode (i.e., the mode
corresponding to the basis vector e′2) is excited, for example, the leftmost two blocks in Fig. 9.9 oscillate
back and forth in unison with equal amplitude. The rightmost two blocks also oscillate in unison with the
same amplitude, but they’re a half-cycle out of phase with the blocks on the left. The block at the center
remains fixed at its equilibrium position. The set of relative oscillation amplitudes associated with each
normal mode of the system is illustrated in Fig. 9.10.

9.11 From Oscillations to Waves

Now let us take our analysis of coupled-oscillator systems one step further still. In particular, we’d like to
be able to generalize the results we obtained in the previous section to the more general case of a system
consisting of some arbitrary number N of coupled oscillators. If we know how to do this, we will be equipped
to study the oscillations of vast numbers of coupled oscillators.

But how often do we really encounter a system consisting of a vast number of coupled oscillators in
nature? Actually, we encounter them all the time! In Chapter 2, we saw that the interatomic forces in
a molecule could in a wide variety of cases be modeled (for small deviations from equilibrium) as simple
harmonic oscillators via the harmonic approximation. Thus, we can think of a long polyatomic molecule
as a system of coupled oscillators, as shown in the left panel of Fig. 9.11. Likewise, a crystal whose atoms
are arranged in a rectangular lattice, as shown in the right panel of Fig. 9.11, can also be modeled as a
three-dimensional grid of coupled oscillators. For this reason, we will in this section refer to the oscillation
objects as “particles” rather than “blocks.” However, we emphasize that the results in this section apply
to any system of oscillators which are coupled together in a mathematically analogous manner — be they
block on springs or atoms in a lattice.
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Figure 9.10: The five normal modes e′n of a system consisting of a chain of five coupled oscillators. The dots
in each panel indicate the components e′n,j of the corresponding e′n with respect to the original basis of the
individual oscillators. In particular, the horizontal position of each dot indicates the label j of the block and
the vertical position indicates the value of en,j for that block. The magnitude of e′n,j reflects the relative
amplitude of oscillation of the jth block when the corresponding mode is excited.

The mathematical description of a system of N coupled oscillators is easy to generalize from the five-
oscillator system we studied in Sect. 9.10. We begin by labeling each of the particles in our system by
an index j = 1, 2, . . . , N which labels the particles in order in order of increasing distance away from the
left “wall.” The total force Fj on any particular particle once again receives a contribution from both the
“spring” on its left and the “spring” on its right. Thus, Newton’s Second Law yields an equation of motion

m
d2xi

dt2
= Fn = −k(xi − xi−i) + k(xn+1)− xn)

= −2kxn + kxn+1 + kxn−1 (9.207)

These N equations can be combined into a single matrix equation of the form

d2

dt2
x = ω2

0Mx , (9.208)

where the N ×N matrix M appearing in this equation is

M =




−2 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
0 0 1 −2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −2 1
0 0 0 0 . . . 1 −2




. (9.209)

It turns out that for a set of N coupled oscillators, the components en,j of the eigenvector en are given
by

e′n,j = Cn sin

(
njπ

N + 1

)
, (9.210)

where Cn is an overall normalization constant. You can verify for yourself (see Problem 12) that the
components of the eigenvectors given in Eq. (9.206) for a coupled system of five oscillators satisfy this
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Figure 9.11: A linear molecule (left panel) can be modeled as a set of coupled oscillators when the interatomic
forces can be modeled via the harmonic approximation. A crystal with a rectangular lattice structure (right
panel) can likewise be modeled as a three-dimensional grid of coupled oscillators.

relation. As for the eigenvalues λn associated with these modes, we note that the eigenvector equation

Men = λnen (9.211)

takes the explicit form




−2 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
0 0 1 −2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −2 1
0 0 0 0 . . . 1 −2







en,1
en,2
en,3
...

en,N−1

en,N




= λ




en,1
en,2
en,3
...

en,N−1

en,N




. (9.212)

This matrix relation implies that the various components of en are related to each other by a set of N
individual equations. For j = 0 and j = N the equations are respectively

en,2 − 2en,1 = λnen,1

−2en,N + en,N−1 = λnen,N . (9.213)

For all other values of j, the corresponding equation has the general form

en,j+1 − 2en,j + en,j−1 = λnen,j . (9.214)

Solving this equation for λn and plugging in the expression in Eq. (9.210) for en,j into the resulting equation
gives us

λn =
en,j+1 + en,j−1

en,j
− 2

=
sin
[
n(j+1)π
N+1

]
+ sin

[
n(j−1)π
N+1

]

sin
(

njπ
N+1

) − 2

=
sin
(

njπ
N+1 + nπ

N+1

)
+ sin

(
njπ
N+1 − nπ

N+1

)

sin
(

njπ
N+1

) − 2 (9.215)
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We can simplify this relation further by using the trigonometric identity

sinα cosβ =
1

2

[
sin(α − β) + sin(α+ β)

]
. (9.216)

The sine terms in the numerator and denominator of the resulting expression cancel, and we find that

λn = 2 cos

(
nπ

N + 1

)
− 2

= 4 cos2
[

nπ

2(N + 1)

]
− 4

= −4 sin2
[

nπ

2(N + 1)

]
, (9.217)

where in going from the first to the second line, we have used the identity cos(2θ) = 2 cos2 θ − 1, and in
going from the second to the third, we have used cos2 θ + sin2 θ = 1. These are the eigenvalues associated
with our set of N normal modes. Moreover, Eq. (9.208) tells us that the relation between each λn and the
corresponding oscillator frequency ωn is given by

ω2 = −λω2
0 . (9.218)

Thus, the normal-mode frequencies are

ωn = ω0

√
−λ = 2ω0

∣∣∣∣sin
[

nπ

2(N + 1)

]∣∣∣∣ . (9.219)

Figure 9.12: The first four normal modes e′n of a system consisting of a chain of N = 20 coupled oscillators.
Just as in Fig. 9.10, the dots in each panel indicate the components e′n,j of the corresponding e′n with respect
to the original basis. The horizontal position of each dot indicates the label j of the particle and the vertical
position indicates the value of en,j.

In Fig. 9.12, we plot the set of en,j as a function of the particle index j. As discussed in Sect. 9.10, en,j
indicates the relative amplitude with which block j oscillates when the normal mode en is excited. Another
way of saying this is that each normal mode en of the system corresponds to a different collective excitation
of its constituent particles. The patterns of en,j values shown in each of the four panels of Fig. 9.12 clearly
resemble sine waves — and indeed, waves they are! Specifically, these collective excitations correspond to
standing compressional waves (i.e., longitudinal waves).
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Problems

1. Find the normal frequencies ω± of the normal modes for a coupled-oscillator system which is identical
to the one shown in Fig. 9.1 except that the spring constant k′ of the central spring has a different
value from the spring constant k of each of the other two springs.

2. Find the values of the constants A+, A−, φ+, and φ− in Eq. (9.7) for the initial conditions x1(0) =
x2(0) = 0 with v1(0) = v0 6= 0 and v2(0) = 0. Use Mathematica to make a plot of the coordinates
x1(t) and x2(t) of the two blocks as functions of time for k/m = 1 with v0 = 5 (in arbitrary units).

3. Determine whether each of the following collections of objects constitutes a vector space. The collection
of objects listed are the would-be vectors in the space. You may assume that the associated set of
scalars is the set of real numbers in each case.

(a) The set of all real functions f(x) for which that are f(x) = 1 at x = 0.

(b) The set of all periodic functions with period π.

(c) The set of all vectors of the form zx̂+ zŷ, where z is a complex number.

(d) The set of all vectors of the form zx̂+ 2zŷ, where z is a complex number.

(e) The set of all polynomials of degree less than or equal to 5 — i.e., the set of polynomials
f(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5, where the an are constants.

(f) The set of all polynomials of degree less than or equal to 4 with a1 = a3.

4. For each of the items (a) − (f) in Problem. 3 which you determined to be a vector space, give the
dimension of the space.

5. In each of the following cases, determine whether the set of vectors given form a basis in the space.

(a) The functions 2x2 + 3, (x− 1)2, and x2 in the function space of quadratic polynomials.

(b) The vectors in the vector space R3 whose component-wise descriptions in the standard {x,y, z}
basis are

a1 =




2
2
1


 , a2 =




3
2
0


 , a3 =




1
2
2


 . (9.220)

(c) The functions x+1, x2 + x, x3 + x2, and x4 + x3 in the function space of quartic (i.e., 4th-order)
polynomials.

6. Evaluate the product BA of the two matrices in Eq. (9.110) in reverse order.

7. For the pair of square matrices A and B given below

A =

(
2 −5
−1 3

)
, B =

(
−1 4
0 2

)
, (9.221)

evaluate the following:

(a) The products AB and BA

(b) The products A2 = AA and B2 = BB

(c) Their sum A+B and difference A−B

8. The commutator of two square matrices A and B, usually denoted [A,B], is defined to be the
difference between the product of the matrices and their product in the reverse order:

[A,B] ≡ AB−BA . (9.222)
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Evaluate the commutators [σ1,σ2], [σ1,σ3], and [σ2,σ3] for the matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (9.223)

These three matrices are called the Pauli matrices, and their commutators play an important role in
the quantum-mechanical description of angular momentum.

9. Given the square matrix

A =




1 0 5i
−2i 2 0
1 1 + i 0


 , (9.224)

find all of the following:

(a) its transpose AT

(b) its complex conjugate A∗

(c) its Hermitian conjugate A†

(d) its trace Tr(A)

(e) its inverse A−1

10. Evaluate the exponential eA of the matrix

A =

(
1 −1
−1 1

)
. (9.225)

Express your answer in the simplest, most compact form possible, without any matrix products or
infinite sums.

11. Consider the 2× 2 matrix

A =

(
1 2
2 4

)
. (9.226)

(a) Find the eigenvalues λ1 and λ2 of this matrix.

(b) Find the corresponding eigenvectors e′1 and e′2.

(c) Find the unitary matrix U which diagonalizes A and verify that UAU† is indeed diagonal, with
diagonal entries equal to the eigenvalues of A.

12. Verify that the general formula in Eq. (9.210) for the components e′n,j of the eigenvectors for a system
of N coupled oscillators is satisfied for the components of the vectors e′1 and e′2 given in Eq. (9.206)
for N = 5.
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