21.7. Capacitance and Capacitors

Capacitor: Two conductors separated by an insultor. 2.g 2. parallel plates: area A $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ ⁷ ^E Eon QI t E ^o \overline{r} $|\Delta V| = |E_d|$ \overline{A} \overline{t} \ddagger $\check{\mathbf{Q}}$ $-\mathbf{Q}$ Question : for a given potential difference DV, how much charge can you store? $E d = \Delta V$ $\frac{Q/A}{\epsilon_{0}} d = \Delta V$ $Q = \left(\frac{\epsilon \cdot A}{n}\right) \Delta V = C(\Delta V)$ $C \equiv \text{Capacifance}$ $umit = \frac{C\omega l_{smb}}{vslb} \equiv Farad = F$ $common$ units: $\rho F = 15^{-12} F$ $\mu F = 10^{-6} F$ e.g our favorite parallelplates

are A (10 cm x 10 cm) $E=\frac{\sigma}{\epsilon_0}=\frac{Q}{\epsilon}$ $|\Delta V| = |E_d|$ $-\mathbb{Q}$ $+\check{Q}$ Let $A = (0.1m)^{2} = 0.01m^{2}$ $d = 5mm2$ 0.005 m $C = 6A = (8.85 \times 10^{-12} C_{\text{Nm}^2}) (0.01 m^2)$ 0.005 m $C = 1.77 \times 10^{-11}$ If you chare it up to +9V, how much charge is stored? $Q = C (4V) =$ $(1.77\times10^{-11} F)(9.0V) = 1.59\times10^{-10} C$ What is the electric field between the plates? $E = \frac{Q}{4} = \frac{Q}{2} = \frac{(1.59 \times 10^{-18}C)}{8.85 \times 10^{-12}C/\text{N/m}^2}$ $E = 1800$ N/C OR $E = \frac{\Delta V}{I} = \frac{9.0 V}{10005 m} = 1800 V$ Dielectrics: Not on test -enabled storing more charge by reducing the electric field, and increasing the energy dentity.

21.8 energy and capacitors

Key idea: a charged capacitor stores $\frac{2000000}{c}$ Cartoon start move one
Charge g $\frac{Gauge}{\rightarrow}$ $u = \begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}$ add a second leaves add This takes more work since the $\overline{\bigoplus}$ $\boxed{\oplus}$ charge is attracted to the -plate and repulled from the + plate. later. - + takes even more work. mme
() t \ddotmark total work done = ever stored up.
 $U_c = \frac{1}{2}Q(\Delta V) = \frac{1}{2}C(\Delta V)^2 = \frac{1}{2}\frac{Q^2}{C}$ $($ all related by $Q = C \Delta V$.

2-9- our parallel plate capacitor above $\Delta V = 9.0 \text{ V}$ $C = 1.77 \text{ X10}^{-1} \text{ F}$ $U_{C} = \frac{1}{2} C (\Delta V)^{2} = 7.17 \times 10^{-10} J$ ting! Improvements: use dielectrics to increase $C = K\epsilon_{0}A$ dielectric constant depends on material thickness - make very then This turns out to be a very useful short term energy storage device 1.9. Chal-capacitor-1. pdf. Confusion alert! we now have 2 Similar looking equations $\Delta U = 9.(\Delta V)$ $U_{c} = \frac{1}{2} Q(\Delta V)$ Why does one have 1/2 but the other doesn't? $U = 96 (2V)$ Tue to other charges, not go $=$ $\frac{1}{2}Q(\Delta V)$ The same charger Ω

c

where is the energy stored? It's a bit of a sloppy question - it is stored in the whole system. Still, it's useful to think of it as being stored in the electric field $U_{C} = \frac{1}{2} Q(\Delta V)$ $\frac{1}{2}$ C (S) λ a $\frac{d}{d} = \frac{1}{d} C (\Delta V)^2$ $\frac{1}{d} \frac{E}{d}$ $\frac{1}{d} \frac{E}{d}$ $=\frac{1}{2}6_{0}E^{2}(A \cdot d)$ volume $U_{\rho} = \frac{1}{2} 6_{\circ} E^{2}$ (volume) Electrical energy density $u_e \equiv \frac{U}{v \sin \theta} = \frac{1}{2} \epsilon_0 E^* \sqrt{\frac{v \sin^2 \theta}{m^3}}$ me Later magnetic fields also store energy Electromagnetic waver transport every Electric field energy