24.1: Magnetism: Read. The prelecture videos also offer a good introduction

Observations:

- Magnetic poles come in two types: Label them "North" and "South". ("North" is also sometimes labeled as "+", and "South" is also sometimes labeled as "-")
- Like poles repel
- Opposite poles attract
- Poles always come in N/S pairs. There are no isolated poles. Thus the simplest magnet is a dipole, with both a "North" and "South" pole.
- The magnetic force is long-range.

24.2. The Magnetic Field.

As was the case for the electric force, we find it convenient to think of the force interaction as resulting from a "source", which sets up a magnetic field, and a "test particle" that responds to the magnetic field. We will see that electric currents act as the sources for a magnetic field, and moving charges experience a magnetic force when exposed to a magnetic field. We will deal with each of these phenomena in turn.

Magnetic field lines:

Recall that electric dipoles tended to align with an external electric field:

Similarly, magnetic dipoles (such as a compass needle) tend to align with an external magnetic field.

 \overrightarrow{B} $\overline{\mathcal{S}}$ لم S \sim f \overline{s} $\overline{\mathcal{N}}$ $\overline{\mathsf{S}}$ $\overline{\mathcal{C}}$ $\overline{\mathcal{S}}$ \mathcal{S} $\overline{\mathcal{N}}$ $\overline{\sim}$ ى $\overline{\mathsf{N}}$ $\overline{\mathcal{S}}$ $\overline{\mathcal{L}}$ \sim $\overline{\mathcal{M}}$ $\overline{\mathcal{S}}$ $\overline{\mathcal{L}}$ $\overline{\mathcal{M}}$ N $\overline{\overline{\mathcal{M}}}$ ᅐ $\overline{\mathcal{S}}$ for magnetic field strength \overrightarrow{B} Use B points from Measure Δ l_{e} or direction with a coupass magnetic dipole "Tesla $Unitis$ V s \mathcal{M} \equiv M 2 later in more 24.4 Magnetic field of a dipole: The direction of the magnetic field \hat{B} at any point on the field line is tangent to the line. s N The lines are drawn Every magnetic field closer together where line leaves the magnetthe magnitude B of at its north pole and the magnetic field is ... enters the magnet at R greater. its south pole. C 2019 Pearson Education, Inc.

 $close0$ losps $key:$ Lines Form

<u> 1980 - Johann Barn, mars an t-Amerikaansk politiker (</u>

 $B_{lartk} \approx 5 \times 10^{-5} T$

1) Long straight current-carrying wive Sille View ToP View \top Top View \overrightarrow{B} \bullet $\overline{\mathcal{B}}$ $\overline{\mathcal{R}}$ O = vectur coming out of page at you Convention: (8) = vector gring into The page, away $From \gamma$ ou Direction: Right Hand Rule
Thumb along current
fingers curl in the doie ction of B

 \bullet Point your *right* thumb in the direction of the current. ² Wrap your fingers around the \cdot wire to indicate a circle. ^O Your fingers curl in the $\sqrt{7}$ direction of the magnetic field lines around the wire. C 2019 Pearson Education Inc. (see demonstration video Side view σ out d \circlearrowleft $\left(\circ \right)$ ໌ຄ ϵ ໌ຈ່ $\pmb{\phi}$ \top K. Cinto oage

Dament boop 2 \overrightarrow{B} $\frac{1}{\sqrt{2}}$ \mathcal{I} 方 $\frac{1}{\beta}$ 亏 $\sqrt{2}$ \overrightarrow{O} B comes out of page inside con loop. Side View $\frac{1}{\beta}$ \bigcap \overrightarrow{B} $\overline{\bigotimes}$ B

lines go in cloud loops (see demonstration video It is the same right hand rule but you can expen it ² ways \overrightarrow{B} 1 I for $\begin{array}{c} \begin{array}{c} \bullet \end{array} \end{array}$ $\frac{1}{2}$ <u>مع</u> Put thumb along curl fingers
aurent fingers along I
unlin Tre direction Thumb points unt in the direction thunk points in the direction of B in the center of the loop Current loop = magnetic dipole s **randee** It is the same right $land$ rule but you can expen it 2 ways ----- **__ .r_,~-\-----+-----,------1----.+----** $^{\prime\prime}$ \mathcal{S}^-

3) Solenoid - a stack of carent boops $\begin{array}{c}\n\mathcal{I} & \mathcal{I} \\
\odot & \mathcal{O} \\
\end{array}$ Inside: B = unitorn and parallel to the axis
Outside = B = quite weak

24.4: Calculating the Magnetic Field Due to a Current

1) Long Straight Wire B gow in circles around wire $B=\frac{\mu_0 I}{2\pi r}$ 1 distance from wire μ_{0} = 4π $\times10^{-7}$ T.m/A \approx 1.26 $\times10^{-6}$ T.m/A = "permeability of free space" ou "Vacuum permeability" (Since 2018, it is notonger defined as exactly 4TT, but is measured to be $4\pi \times (1.06000000055(5)) \times 10^{-7} T.m/A$

2) Circular aurent loop, at center. Current loop, radius R, carrying current I $B=\frac{\mu_0 I}{2R}$ at center: 2a) loop with N turns or windings \widehat{B} $B = \frac{\mu_0 NI}{2R}$ Solenoid $\overline{3}$ $\overrightarrow{\mathcal{B}}$ Nurindings length L, current I B (inside, away from edger) = 110 NT. $B=\mu_0\left(\frac{N}{I}\right)I$

Examples: Ch24-long-wires-1 and Ch24-long-wires-2.