Consider a charge growing with velocity to in an applied magnetice field B (B might be due to some other coils or magnets. Top View Side Vien F B \prec to the page, coming () => out of the page out of the paper. ⊗ ⇒ into the page IFI=qNBsinx ち (元, 3 direction of F: 1 given by a right hand rule (cross product) Write F = 9NXB Right hand : 1) place fingers along to cul then to point along B 3) Think points in direction of AF X B $\overline{\mathcal{N}}$ XB Than L $F = |q| vB \sin \alpha$ α F = |q| vB**1** Note the direction of \vec{v} ² The force is perpendicular **4** The magnitude of **3** For a negative charge, the and \vec{B} , and find the angle to the plane containing \vec{v} and force is in the direction the force is given α between them. \vec{B} . The direction of \vec{F} is given opposite to that predicted by Equation 24.5 by the right-hand rule. or Equation 24.6. by the right-hand rule. © 2019 Pearson Education, Inc.

24.5: Magnetic Fields Exert Forces on Moving Charges

F= gt XB examples: (all assuming a positive charge 9 2 2 (into page) B 3 what if g is negative? Then F points in the other direction.

Example: The long straight wire carries a current I to The left. Owhat is the direction of the magnetic field due to the wire at point P? O P T Next, a charge q is noving to the right with velocity to at point P. What is the direction of the force on The moving charge ? \overrightarrow{B} \otimes \overrightarrow{V} B Ø-

Lastly what is the direction of the force on a charge moving towards the wire from below? T ↑ Tr I $\rightarrow \overrightarrow{F}$ B (More with numbers later .)

Return to 24.5 - forces on individual charges Suppose B = uniform, and out of the page. Assure a positive charge .g. $\vec{\mathcal{B}} \odot \odot_{\vec{\mathcal{A}}} \odot \odot \odot \odot \odot \odot \odot \vec{\mathcal{B}}$ B Poll: direction of F? (repeat) Recall $\vec{F} = q \vec{N} \times \vec{B} : \vec{D}$ Fingers along \vec{N} @ curl fingers to point to B (3) Thent points along F.

 $\odot \overline{\mathcal{B}}$ B \bullet \bullet \bullet • 🛉 📀 \bullet $\mathbf{\bullet}$ $\mathbf{\bullet}$ $\mathbf{\bullet}$ $\mathbf{\bullet}$ • 90 • \bullet \vec{f} \bullet $\mathbf{\bullet}$ \odot $\mathbf{\bullet}$ $\mathbf{\bullet}$ \odot $\mathbf{\bullet}$ $\mathbf{\bullet}$ $\mathbf{\bullet}$ $\mathbf{\bullet}$ B B • • • \bullet Result : particle goes in a circle of radius r Use ZF=ma grobain 90° = MN2 N= mr qB on : Application : measuring m/g for a charged particle -> electron: hab -> charged ion : Mass spect rometer Cyclotron: Sometimes ask how long does it take to complete one abit a what is the abit Fre quency? $T = 2TT \Lambda = \frac{2TT}{\sqrt{gB}}$) <u>277</u>ms 9 B = 9B

e.g. an electron in Earth's magnetic field (The aurora) m= 9.11 × 10 -31 kg $g = -e = -1.602 \times 10^{-19} C$ B = 5×10⁻⁵ T $\frac{(f-19B)}{2Tm} = \frac{(1.602 \times 10^{-19}C)(5\times 10^{-5}T)}{2T(9.1)\times 10^{-31}kg} = 1.4 \times 10^{6}Hz$ What does the - sign mean? The direction is opposite positive q negative q \odot 9 ? Θ Θ \bigcirc Θ \bigcirc \bigcirc Related application: velocity selector. (See example.)

