25.1: Induced currents.

 We have seen that electric currents produce magnetic fields. In this chapter, we explore the reverse process: using changing magnetic fields to produce electric currents. One key thing we will observe is that we need *changing* magnetic flux to produce an emf.

Examples:

- Inducing current in a coil with a magnet
	- *changing* magnetic field induces a current in a coil

loop of wire. $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ Flux throw move p chang

• Direction of induced current in a coil

Increasing magnetic flux causes an opposing current.

Decreasing magnetic flux causes a current in the opposite direction. Generally, we observe

that the induced current opposes the original change in magnetic flux. We will pay attention

both the *magnitude* and *direction* of the induced current

 $in \text{diag } \overrightarrow{B}$ $\begin{array}{c|c} 5 & 1 \\ \hline \end{array}$ More Flux through coil move Closer

• Current in one coil induces current in a second coil. The direction of the induced current opposes the *change* in magnetic flux.

 $\overline{\mathcal{L}}$ \mathcal{S} through the in Quel B Net result \mathcal{S} elling bar magn $\overline{\mathcal{N}}$ These repel,
Slowing down \overrightarrow{B} N indeese dipole \overline{S}

Drop tube: Drop a magnet down an aluminum tube:

- $\frac{1}{2}$ \mathcal{G} ring ring ring $\frac{1}{2}$ $\frac{1}{2}$ energy Ring, induced coil, coil, current and field. power off. power on. Net effect:The north pules repel. 工 $\overline{\mathcal{N}}$ B_{coil}
- Ring toss: The direction of the induced current opposes the change in magnetic flux. The effect is that the ring and coil repel each other.

• Eddy current braking: Using induced currents for magnetic braking.

Extract a general principle: **Lenz's Law:** A changing magnetic flux through a loop will induce an emf in that loop. The direction of that induced emf will tend to oppose the change in the flux. We will figure out the magnitude next. a general principle: Lenz's Law: A changin
Ice an emf in that loop. The direction of the

Emir EI

why do you need a force To overcome a force To overcome and the second control of the second control of the se
To overcome a force To overcome and the second control of the second control of the second control of the secon

Farag

the magnetic force I also contained the magnetic force I also contained the magnetic force I also contained th
The magnetic force I also contained the magnetic force I also contained the magnetic force I also contained th

Power in Power out

Fpull

E industrial control of the industrial c

How large is ^E

25.2 Motional EMF Bar Conducting rails Ń. $F_{\rho u}$ $\overline{\mathsf{X}}$ $\left[\mathcal{R}\right]$ $\widehat{\chi}$ $\widehat{\times}$ $\overline{\alpha}$ <u>Pull on bar Feull so it moves with</u> $\frac{constant \ velocity \ \overrightarrow{v}}{cos \theta}$ Charges in the a force \overrightarrow{F} = Net effect $\overline{\mathcal{I}}$ R a current ros induced emf \equiv $T \cdot R$ $\overline{\mathcal{E}}$ \mathcal{E} How large is Power in = Power our ϵ \equiv $F \cdot \mathcal{N}$ Why do you need a force? To overcome $rac{1}{\sqrt{3}}$ magnetic force the $F_{\rho \nu ll}$ $\overrightarrow{F_{mag}}$

 (ILB) $S = E$
 T
 $T(B)$ $S = E$
 T
 $T(A)$
 $T(B)$ $T(B)$ by a conductor moving in a

the induced employees the induced employees the change of the change Magnetic Flux $\frac{Q}{B}$ \overline{a} $\overline{\mathcal{X}}$ $Magnetix$ $Flux = (effective).B$
 $Maganetix = Flux$ $D = (since in a moment more in a moment)$ $\frac{a_{\text{max}}}{a}$ there $\frac{a_{\text{max}}}{a}$ there is the right there Kate at which area is changing $\frac{\dot{u}}{dt}$ $\frac{L \cdot d\chi}{dt}$ $\frac{L \cdot \mathcal{N}}{dt}$ $\frac{1}{\sqrt{2}}$ \mathcal{C} $= BLv = dD$

Faraday's Law: $\begin{array}{rcl} \epsilon & = & -\underline{d} \ \overline{p} \\ \hline \end{array}$

- sign: Lenz's Law. The dérection of the induced employponer the change $\ln L |_{UX}$

 $\overline{\mathcal{N}}$ Induced current: BOG induced B As the ban moves to the right, there is more flux into the page. The induced flux thus comes out of the Page.

