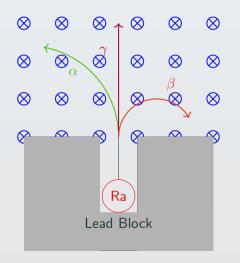

Ch. 30 Part 2 Radioactivity We sometimes observe a nucleus emit something without any external stimulus. The nucleus is unresponsive to ordinary human-scale elements of pressure, chemistry, and temperature.

Radioactivity: disintegration or decay of an unstable nucleus.

Observe three basic types, distinguished by their behavior in a magnetic field and their interaction with matter. Call them α , β , and γ .


30.4: Radioactivity

Recall we found for charged particles moving in a magnetic field that

$$qvB = mrac{v^2}{r} \implies r = rac{mv}{qB}$$

30.4: Radioactivity

Recall we found for charged particles moving in a magnetic field that

$$qvB = mrac{v^2}{r} \implies r = rac{mv}{qB}$$

We now understand that these are:

- α: A ⁴₂He nucleus, *i.e.* 2 protons and 2 neutrons.
- β : An electron (e⁻)
- γ : A photon.

- charge = +2e
- mass = 4.0015 u, or using $(1 u)c^2 = 931.5$ MeV, the energy equivalent is 3727.4 MeV
- The α particle also carries away kinetic energy
- Reaction: ${}^A_Z X \rightarrow {}^{A-4}_{Z-2} Y + {}^4_2 \alpha$

- charge = +2e
- mass = 4.0015 u, or using $(1 u)c^2 = 931.5$ MeV, the energy equivalent is 3727.4 MeV
- The α particle also carries away kinetic energy
- Reaction: ${}^A_Z X \rightarrow {}^{A-4}_{Z-2} Y + {}^4_2 \alpha$
- e.g. $^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\alpha$

- charge = +2e
- mass = 4.0015 u, or using $(1 u)c^2 = 931.5$ MeV, the energy equivalent is 3727.4 MeV
- The α particle also carries away kinetic energy
- Reaction: ${}^A_Z X \rightarrow {}^{A-4}_{Z-2} Y + {}^4_2 \alpha$
- e.g. $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$
- e.g. $^{226}_{88}$ Ra $\rightarrow ^{222}_{86}$ Rn + $^4_2\alpha$

Energy released (usually shows up as the kinetic energy of the α particle.)

•
$$^{226}_{88}$$
Ra $\rightarrow ^{222}_{86}$ Rn + $^4_2\alpha$

Initial mass $m_{\rm Ra} = 226.025\,409\,{
m u}$

Energy released (usually shows up as the kinetic energy of the α particle.)

•	²²⁶ Ra	\rightarrow	222	Rn	+	$^{4}_{2}\alpha$	
	00		00			2	

Initial mass	$m_{ m Ra}$	=	226.025 409 u
Final mass	$m_{ m Rn}$	=	222.017 577 u
	m_{lpha}	=	4.001 506 u

Energy released (usually shows up as the kinetic energy of the α particle.)

•	²²⁶ Ra	$ ightarrow {222 \over 86} R$	$\ln + \frac{4}{2}\alpha$

Initial mass	$m_{ m Ra}$	=	226.025 409 u
Final mass	$m_{ m Rn}$	=	222.017 577 u
	m_{lpha}	=	4.001 506 u
Final mass	$m_{ m final}$	=	226.019 083 u
Difference			0.006 326 u

Energy released (usually shows up as the kinetic energy of the α particle.)

•
$$^{226}_{88}$$
 Ra $\rightarrow ^{222}_{86}$ Rn $+ ^{4}_{2} \alpha$

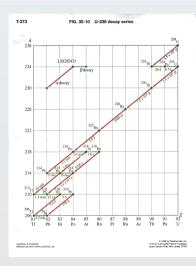
Initial mass	$m_{ m Ra}$	=	226.025 409 u
Final mass	$m_{ m Rn}$	=	222.017 577 u
	m_{lpha}	=	4.001 506 u
Final mass	$m_{ m final}$	=	226.019 083 u
Difference			0.006 326 u

Energy difference:

$$\Delta E = (0.006\,326\,\mathrm{u}) \times c^2 = (0.006\,326) \times (1\,\mathrm{u}c^2)$$
$$\Delta E = (0.006\,326) \times (931.5\,\mathrm{MeV}) = 5.893\,\mathrm{MeV}$$

Beta Decay

- charge = -e
- mass = 9.11×10^{-31} kg; the energy equivalent is 0.51100 MeV
- Reaction: ${}^A_Z X \rightarrow {}^A_{Z+1} Y + e^-$
- e.g. ${}^{35}_{16}{
 m S} \rightarrow {}^{35}_{17}{
 m Cl} + {
 m e}^- + \bar{\nu}_e$
- Neutron decay: $n
 ightarrow {
 m p} + {
 m e}^- + ar{
 u}_e$
- The v


 e is a neutral nearly massless particle known as an anti-neutrino of the electron type. It plays an important role in conserving momentum in this reaction. We will ignore it.

The reverse reaction is also possible-electron capture:

- Reaction: $^A_Z X + e^- \rightarrow ^A_{Z-1} Y$
- e.g. ${}^{59}_{28}\text{Ni} + e^- \rightarrow {}^{59}_{27}\text{Co} + \nu_e$
- The v_e is a neutral nearly massless particle known as a neutrino of the electron type. It plays an important role in conserving momentum in this reaction. We will ignore it.

- An excited nuclear state (indicated by *) emits a photon
- The photon carries away energy $E = \frac{hc}{\lambda}$
- Reaction: ${}^{A}_{Z}X^{\star} \rightarrow {}^{A}_{Z}X + \gamma$
- e.g. ${}^{137}_{55}\mathrm{Cs}^{\star} \rightarrow {}^{137}_{55}\mathrm{Cs} + \gamma$

Decay Chains

Nuclear Radiation Is a Form of Ionizing Radiation

This is useful to read, but will not be on the final.

- Nuclear Decay and Half-Lives
- Examples and Applications
- Final Review