Phys 112

Final Review

May 6, 2022

Logistics

Logistics

- Final: Wednesday, May 11, 12:00-3:00 p.m., Hugel 103
- Moodle Forum: I will monitor the Moodle Discussion and will try to provide prompt answers.
- For private questions, please do continue to use email.
- Topics: The final exam will be cumulative, incorporating topics covered throughout the semester.
- Time: The final will be designed to be completed in a 2-hour time period, but you may take the full 3 -hour period if you wish.
- Equation sheet: You will be provided with a copy of the same equation sheet available on Moodle.

Content and Style

- Style: The final exam will be very similar to individual hour exams in style and format. Effectively, imagine two hour tests stapled together.
- It will contain a mix of problems of varying degrees of difficulty. Some problems might include qualitative as well as quantitative questions. Some problems may focus on a single topic or chapter, while others may include topics from several different chapters.
- Consult the posted notes on Moodle for the specific list of topics.

Waves

Mathematical Description of Waves

- $y(x, t)=A \cos \left(\frac{2 \pi}{\lambda} x-\frac{2 \pi}{T} t\right)$
- $v=\lambda f$
- $\omega=2 \pi f=\frac{2 \pi}{T}$
- " y " can represent height of string, excess air pressure in a sound wave, electric or magnetic field, or whatever else is "waving."
" " v " is set by the physics of what's vibrating or oscillating.
- " f " (or equivalently λ) is set by how you excite it.

Energy and Power

- For waves that spread out over an area A: $I=\frac{P}{A}$
- Surface area of a sphere: $A=4 \pi R^{2}$.

Electromagnetic Waves

- General features
- $\vec{E} \perp \vec{B}$
- $E=c B$
$c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$
- Direction: $\vec{E} \times \vec{B}$
- Intensity: $I=\frac{1}{2} c \epsilon_{0} E^{2}=\frac{1}{2} \subset \in_{0}(C B)^{2}$

$$
=\frac{1}{2} C \& 0 \frac{B^{2}}{\mu_{0} \psi_{0}}=\frac{1}{2 \mu_{0}} C B^{2}
$$

Matter Waves

- $\lambda=\frac{h}{p} \quad \sim=\stackrel{\downarrow}{m}$
- $E=\frac{p^{2}}{2 m}$

Combining Waves

- Standing waves: Boundary conditions set λ, and hence f.
- Draw pictures!
- Beats: $f_{\text {beat }}=\left|f_{1}-f_{2}\right|$
- Often a useful probe of slightly different f values.

Combining Waves - Interference

- Look at path length difference Δr compared to λ.
- Constructive: $\Delta r=m \lambda$
- Destructive: $\Delta r=\left(m+\frac{1}{2}\right) \lambda$
- Draw pictures to help calculate Δr !

Interference and Diffraction

- Look at path length difference Δr compared to λ.
- Single slit: a $\sin \theta=n \lambda$ (Minima)
- Multiple slits: $d \sin \theta=m \lambda \quad$ (Maxima)

- $\sin \theta \approx \frac{y}{L}$ a (small angles). Draw a picture!
- Thin films: Consider optical path length nt as well as reflections; How do the two paths differ? m t
- Same ideas apply to any wave in similar geometries.

Geometric Optics

- Snell's Law $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
- $\frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}}$
- $m=\frac{h_{i}}{h_{0}}=-\frac{s^{\prime}}{s}$
- Single lens systems only \curvearrowleft
- Draw clear sketches with clear labels.

Electric and Magnetic Forces and Fields

Sources of Electric Fields

- Calculate \vec{E} for simple configurations.
- Discrete point charges
- Adding vectors
- charged parallel plates
- $E_{x}=-\frac{\Delta V}{\Delta x}$
- $\vec{F}=q_{0} \vec{E}$
- Use $\vec{F}=m \vec{a}$ to determine motion.
- Be able to draw pictures

Electric Potential and Electric Potential Energy

- Calculate V for simple configurations.
- Discrete point charges
- charged parallel plates
- Relations between \vec{E} and $V(\vec{E}$ points from high V to low V.)
- $U=q_{0} V$.
- Use conservation of energy
- Simple circuits: Batteries and Resistors
- sketch and label currents and voltages
$P=I(\Delta V)$
$\Delta V=I R$
- Use clear, consistent labels.

Magnetic Fields

- Calculate \vec{B} for simple configurations.
- Wires, loops, and solenoids
- Right Hand Rule
- Adding vectors
- $\vec{F}=q \vec{v} \times \vec{B}$
- $\vec{F}=I \vec{L} \times \vec{B}$
- Use $\vec{F}=m \vec{a}$ to determine motion.
- Be able to draw pictures
- Distinguish between currents that act as sources of B and currents that respond to an external B.

Coupling of Electric and Magnetic Fields

- Faraday's Law
- Lenz's law: Be able to explain the direction of the induced current.
- Be able to calculate the induced emf
- Electromagnetic Waves

Modern Physics

Photons

- Change in energy level ΔE can be accompanied by a photon with energy $\Delta E=h f=\frac{h c}{\lambda}$
- $h c=1240 \mathrm{eV}$ nm
- Intensity: $I=\frac{P}{A}$

Matter Waves

- $\lambda=\frac{h}{p}$
- $E=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}$
- Particle in a box \Longleftrightarrow vibrating string
- Discrete energy states \Longrightarrow only certain energy photons emitted or absorbed.

Atomic Physics

- $r_{n}=n^{2} a_{0}$
- $E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}}$
- Change in energy level ΔE can be accompanied by a photon with energy $\Delta E=h f=\frac{h c}{\lambda} \leqslant$
- Collisional excitations-conservation of energy

Nuclear Physics

- α decay: ${ }_{\mathrm{Z}}^{\mathrm{A} X} \rightarrow{ }_{\mathrm{Z}-4}^{\mathrm{A}-4} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
- β decay: ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}+1}^{\mathrm{A}} \mathrm{Y}+\mathrm{e}^{-}+\bar{\nu}_{e}$
- Reverse β decay: ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+\mathrm{e}^{-} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}} \mathrm{Y}+\nu_{e}$
- γ decay: ${ }_{Z}^{A} X^{\star} \rightarrow{ }_{Z}^{A} \mathrm{X}+\gamma$
- $\Delta E=(\Delta m) c^{2}$
- $(1 \mathrm{u}) c^{2}=931.5 \mathrm{MeV}$

Nuclear Physics

- $N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{t_{1 / 2}}}$
- $N=N_{0} e^{-\frac{t}{\tau}}=$ 女left

$$
F \text { decopd }=N_{0}-N
$$

Problem Strategies

- Know what the letters mean on the equation sheet.
- Read the whole problem carefully.
- Make a big sketch with clear labels.
- Try expressing in words what is happening-what is the story?
- Read equations as sentences, not just jumbles of symbols.
- Be able to explain a logical chain of reasoning.
- Pay attention to units. They can sometimes be a clue about how to approach a problem. (e.g. note that Intensity has units of $\mathrm{W} / \mathrm{m}^{2}$, while power has units of W.)
- Reread any written explanations to make sure they say what you meant to say.

