Phys 112 Final Review

May 6, 2022

Logistics

Logistics

- Final: Wednesday, May 11, 12:00–3:00 p.m., Hugel 103
- Moodle Forum: I will monitor the Moodle Discussion and will try to provide prompt answers.
- For private questions, please do continue to use email.
- Topics: The final exam will be cumulative, incorporating topics covered throughout the semester.
- Time: The final will be designed to be completed in a 2-hour time period, but you may take the full 3-hour period if you wish.
- Equation sheet: You will be provided with a copy of the same equation sheet available on Moodle.

Content and Style

- Style: The final exam will be very similar to individual hour exams in style and format. Effectively, imagine two hour tests stapled together.
- It will contain a mix of problems of varying degrees of difficulty. Some problems might include qualitative as well as quantitative questions. Some problems may focus on a single topic or chapter, while others may include topics from several different chapters.
- Consult the posted notes on Moodle for the specific list of topics.

Waves

Mathematical Description of Waves

$$y(x,t) = A\cos\left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t\right)$$

$$v = \lambda f$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

- "y" can represent height of string, excess air pressure in a sound wave, electric or magnetic field, or whatever else is "waving."
- "v" is set by the physics of what's vibrating or oscillating.
- "f" (or equivalently λ) is set by how you excite it.

Energy and Power

- For waves that spread out over an area A: $I = \frac{P}{A}$
- Surface area of a sphere: $A = 4\pi R^2$.

Electromagnetic Waves

- General features
- $\vec{E} \perp \vec{B}$
- E = cB

■ Direction:
$$\vec{E} \times \vec{B}$$

■ Intensity: $I = \frac{1}{2}c\epsilon_0 E^2 = \frac{1}{2}c\epsilon_0 (CB)^2 = \frac{1}{2}c\epsilon_0 E^2$

$$= \frac{1}{2}c\epsilon_0 E^2 = \frac{1}{2}c\epsilon_0 (CB)^2 = \frac{1}{2}c\epsilon_0 E^2$$

$$= \frac{1}{2}c\epsilon_0 E^2 = \frac{1}{2}c\epsilon_0 E^2$$

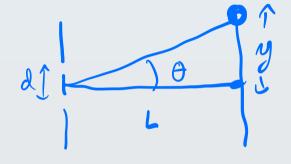
Matter Waves

•
$$E = \frac{\rho}{2m}$$

Combining Waves

- Standing waves: Boundary conditions set λ , and hence f.
- Draw pictures!
- Beats: $f_{beat} = |f_1 f_2|$
 - Often a useful probe of slightly different *f* values.

Combining Waves – Interference


- Look at path length difference Δr compared to λ .
- Constructive: $\Delta r = m\lambda$
- Destructive: $\Delta r = \left(m + \frac{1}{2}\right)\lambda$
- Draw pictures to help calculate $\Delta r!$

Interference and Diffraction

- Look at path length difference Δr compared to λ .
- Single slit: $a \sin \theta = n\lambda$ (Minima)
- Multiple slits: $d \sin \theta = m\lambda$ (Maxima)
- $\sin \theta \approx \frac{y}{L}a$ (small angles). Draw a picture!

Same ideas apply to any wave in similar geometries.

Geometric Optics

- Snell's Law $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- No complex geometry

$$m = \frac{h_i}{h_o} = -\frac{s'}{s}$$

- Single lens systems only
- Draw clear sketches with clear labels.

Electric and Magnetic Forces and Fields

Sources of Electric Fields

- Calculate \vec{E} for simple configurations.
 - Discrete point charges
 - Adding vectors
 - charged parallel plates

•
$$E_x = -\frac{\Delta V}{\Delta x}$$

- $\vec{F} = q_0 \vec{E}$
- Use $\vec{F} = m\vec{a}$ to determine motion.
- Be able to draw pictures

Electric Potential and Electric Potential Energy

- Calculate V for simple configurations.
 - Discrete point charges
 - charged parallel plates
 - Relations between \vec{E} and V (\vec{E} points from high V to low V.)
- $U = q_0 V$.
- Use conservation of energy
- Simple circuits: Batteries and Resistors
 - sketch and label currents and voltages
 - Use clear, consistent labels.

Magnetic Fields

- Calculate \vec{B} for simple configurations.
 - Wires, loops, and solenoids
 - Right Hand Rule
 - Adding vectors
- $\vec{F} = q\vec{v} \times \vec{B}$
- $\vec{F} = I\vec{L} \times \vec{B}$
- Use $\vec{F} = m\vec{a}$ to determine motion.
- Be able to draw pictures
- Distinguish between currents that act as sources of B and currents that respond to an external B.

Coupling of Electric and Magnetic Fields


- Faraday's Law
 - Lenz's law: Be able to explain the direction of the induced current.
 - Be able to calculate the induced emf
- Electromagnetic Waves

Modern Physics

Photons

• Change in energy level ΔE can be accompanied by a photon with energy

$$\Delta E = hf = \frac{hc}{\lambda}$$

• hc = 1240 eV nm• Intensity: $I = \frac{P}{A}$

Matter Waves

$$\lambda = \frac{h}{h}$$

$$E_{\bullet} = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

- Particle in a box ⇔ vibrating string
- Discrete energy states ⇒ only certain energy photons emitted or absorbed.

Atomic Physics

$$r_n = n^2 a_0$$

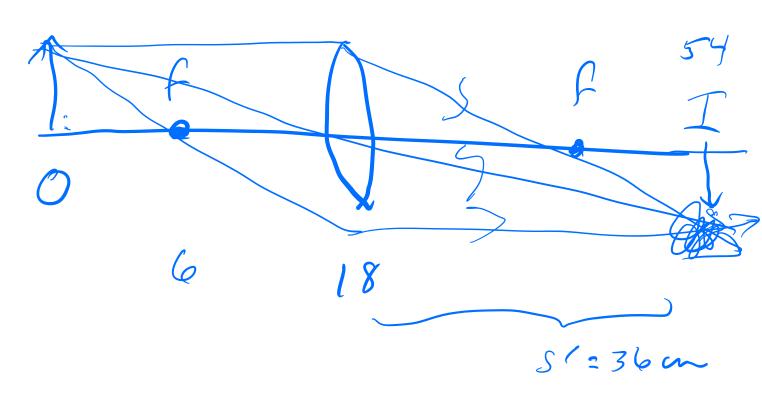
•
$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$

- Change in energy level ΔE can be accompanied by a photon with energy $\Delta E = hf = \frac{hc}{\lambda}$
- Collisional excitations—conservation of energy

Nuclear Physics

- α decay: ${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He$
- β decay: ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \bar{\nu}_{e}$
- Reverse β decay: ${}^{A}_{Z}X + e^{-} \rightarrow {}^{A}_{Z-1}Y + \nu_{e}$
- γ decay: ${}_Z^AX^{\star} \rightarrow {}_Z^AX + \gamma$
- $\Delta E = (\Delta m)c^2$
- $(1 \text{ u})c^2 = 931.5 \text{ MeV}$

Nuclear Physics


$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}}$$

$$N = N_0 e^{-\frac{t}{\tau}}$$

•
$$N = N_0 e^{-\frac{1}{2}}$$

Problem Strategies

- Know what the letters mean on the equation sheet.
- Read the whole problem carefully.
- Make a big sketch with clear labels.
- Try expressing in words what is happening—what is the story?
- Read equations as sentences, not just jumbles of symbols.
- Be able to explain a logical chain of reasoning.
- Pay attention to units. They can sometimes be a clue about how to approach a problem. (e.g. note that Intensity has units of W/m², while power has units of W.)
- Reread any written explanations to make sure they say what you meant to say.

$$S = 18 \text{ cm}$$
 $f = 12 \text{ cm}$
 $\frac{1}{5} = \frac{1}{5} + \frac{1}{5}$
 $\frac{1}{5} = \frac{1}{5} - \frac{1}{18} = \frac{1}{36}$
 $\frac{1}{5} = \frac{1}{2} = \frac{1}{36} = \frac{1}{36}$

at 36 cm past lens = 5 fm mbah