Physics 112: General Physics II: Electricity, Magnetism, and Optics Beta Decay

Problem 30.67 The technique known as potassium-argon dating is used to date volcanic rock and ash, and thus establish dates for nearby fossils, like this 1.8-million-year-old hominid skull. The potassium isotope 40 K decays with a 1.28-billion-year half-life and is naturally present at very low levels. The most common decay mode is beta-minus decay into the stable isotope ${}^{40}Ca$, but 10.9% of decays result in the stable isotope ${}^{40}Ar$. The high temperatures in volcanoes drive argon out of solidifying rock and ash, so there is no argon in newly formed material. After formation, argon produced in the decay of 40 K is trapped, so 40 Ar builds up steadily over time. Accurate dating is possible by measuring the ratio of the number of atoms of 40Ar and 40K .

a. What type of decay results in ${}^{40}\text{Ar}$?

Putting in the explicit proton numbers Z , $_{19}^{40}\text{K}$ changes into $_{18}^{40}\text{Ar}$. Effectively, a proton has been replaced by a neutron, so this is electron capture (or inverse beta decay).

$$
{}_{19}^{40}\text{K} + \text{e}^- \rightarrow {}_{18}^{40}\text{Ar} + \nu_e
$$

b. How much energy is released in this reaction? The mass of 40 K is 39.963998475 u, and the mass of ⁴⁰Ar is 39*.*962 383 123 u.

Taking the difference of the masses:

$$
\Delta m = m_{^{40}\text{K}} - m_{^{40}\text{Ar}}
$$

\n
$$
\Delta m = 39.963\,998\,475\,\text{u}
$$

\n
$$
- 39.962\,383\,123\,\text{u}
$$

\n
$$
\Delta m = 0.001\,615\,\text{u}
$$

\n
$$
\Delta E = (\Delta m)c^2 = (0.001\,615) \times (931.5\,\text{MeV}) = 1.50\,\text{MeV}
$$

c. 1.8 million years after its formation, what fraction of the 40 K initially present in a sample has decayed?

Let the intial number of ⁴⁰K atoms be N_0 . (Since all the questions ask for fractions or ratios, this number will never actually be needed.) The number of potassium atoms left after a time $t = 1.80 \times 10^6$ yr is N_K .

$$
N_{\mathrm{K}}=N_0\left(\frac{1}{2}\right)^{t/t_{1/2}}
$$

The number that have decayed is then $N_0 - N_k$, and the fraction that has decayed is

$$
N_0 - N_{\rm K} = N_0 \left(1 - \left(\frac{1}{2}\right)^{t/t_{1/2}} \right)
$$

\n
$$
\frac{N_0 - N_{\rm K}}{N_0} = \left(1 - \left(\frac{1}{2}\right)^{t/t_{1/2}} \right)
$$

\n
$$
\frac{N_0 - N_{\rm K}}{N_0} = \left(1 - \left(\frac{1}{2}\right)^{(1.80 \times 10^6 \text{ yr})/(1.28 \times 10^9 \text{ yr})} \right)
$$

\n
$$
\frac{N_0 - N_{\rm K}}{N_0} = (1 - 0.9990) = 0.0009743
$$

d. 1.8 million years after its formation, what is the ⁴⁰Ar/⁴⁰K ratio of the sample?

Only 10.9% of those decays result in 40Ar . The remainder result in 40Ca . Thus the number of ⁴⁰Ar atoms is

$$
N_{\rm Ar} = (0.109) \times (N_0 - N_{\rm K})
$$

The problem asks for ratios, so divide both sides by N_K .

$$
\frac{N_{\text{Ar}}}{N_{\text{K}}} = (0.109) \times \left(\frac{N_0}{N_{\text{K}}} - 1\right)
$$

But note that we found above that $N_K/N_0 = 0.9990$, so

$$
\frac{N_{\text{Ar}}}{N_{\text{K}}} = (0.109) \times \left(\frac{1}{0.9990} - 1\right) = 0.0001063
$$