20.6 Conductors and Electric Fields

Conductor => charges can move Freely. \leftarrow £ . E= 0 inside a conductor Any excess charge ties on the surface $\vec{E} \perp surface$ |Ē|= T/E, adjacent to the surface (σ= denedy) E & G largest near points NM ~ lorgest E near point.

Shielding / Faraday cage

++ + +	+ + +	- + + + F=0	EZO
T T	E=0	\$	/
+	cavity	+	
t Con	ductor t	+++++	

Forces: Use F=ma, where F=gE for a charge of in an electric field E. Example: Use parallel plates to stop and electron: an electron has an initial speed of 3.00 × 10 m/s, what magnitude and direction of electric field would be needed to bring it to rost in 0.0500m? *√*₀ (-e) charge one plate + Q the other - Q. Poll: what orientation of charges do we need ?

Forces and Torques on a Dipole Dipole Q·L Dipole moment PZ $p \simeq 3.4 \times 10^{-30} \text{ Cm}$ eg. Hee) p what happens to p in an imposed uniform electric field E 1 $\overrightarrow{F_{+}}$ F Net force = D But tends to notate to align with E Torque: (I) = PEsino (no quantitative colculations).