Chapter 22: Current and Resistance

22.1 A Model of Current & 22.2 Defining and Describing Current (review) We now consider systems out of equilibrium. what happened to charge carriers f you apply an electric field ? They tend to move. ^e g consider ^a wire current \bigoplus $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ Count how many charger ΔQ pass through this surface in a time $\triangle \; t$ D efine current $\Gamma \equiv \Delta \Theta$ $\geq t$ $\frac{U_{\text{m}}}{S}$ $\frac{U_{\text{m}}}{S}$ $\frac{1}{S}$ $\frac{1}{S}$ Second c_{5mm} units = μ m $A = 10^{-3}$ A Household circuits \lesssim 20 A or 30 A.

22.4 Connecting Potential and Current

Moving charges typically encounter resistance - impuntées le imperfections Net fort \Rightarrow \overrightarrow{E} $\frac{f(x)}{f(x)}$ drift average speed $\sim 10^{6}m/s$, But many $D\nu\hbox{d}f$ speed \sim 0.1 mm/s Quantity That resistance. Two main factors material and geometry $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ area A $Hifh \longrightarrow E$ how V I current through device $A = \cos x - \sec x \cos x$ area $j =$ current density = I/A ($\frac{m_{\overline{P}}}{m_{\overline{P}}}$ a local, nuirvoscopic property
DV = applied voltage difference $L = \text{length}$ $E =$ electric field

What sets J? Applied E and The $\frac{matically's\ positive ifivity}}{\theta}$ $P = \sqrt{Q}$ $units:$ $\rho = \frac{1}{7}$ $P = \frac{V/m}{A/m^2}$ $m = \perp \perp m$ p is ^a property of ^a material $D = const$ and $i.e.$ in dependent σ E T_{new} we say the material is chmic. It obeys The microscopic version of Ohm's Law $j = \frac{1}{\rho}E$ T ables:

Table 25.1 Resistivities at Room Temperature $(20 °C)$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Macroscopic Olm's Law: K L Iaea ^A High
V $Hif \text{ is a } \frac{f}{f}$ $(\triangle \vee)$ $j = \frac{1}{\rho}$ $f = \frac{1}{\rho} (\Delta V)$ $\left(\frac{A}{A}\right)$ (1) a sv= I $\left(\frac{\rho L}{A}\right)$ \int compare to $\triangle V = I R$ for a c_{γ} lin des $R = \frac{\rho L}{A}$ $units$ $[K] = \boxed{\bot \bot \cdot n}$ $\frac{m}{2}$ de $\frac{1}{\sqrt{2}}$ Macroscopic form of their Law $\Delta V = I K$ u_{m15} $R = \Delta v \Rightarrow \Delta v = 6hms = -1$

 $c₅$ common units: 10^3 ch = 1 k Λ common voltage ~ V $conmon$ currents $10^{-3}A = 1$ m A $Symb\nu l$

Cool application: Example 22.16 Body composition: muscle and fat
have different resisterities. measurements of por a fixed geometry can tell about the relative composition

22.3 Batteries and emf

emf = electromotive force - a terrible name! emf = E = a device in a circuit that makes current flow from a low potential to a high potential (e.g. a battery) Text talks of a "Charge escalator" Symbol - $(Read)$ Simple circuit PU
3 Resistor R follow a charge go Volt
meter ΔV = on its journey 1.51 $\dot{\bigcirc}$ B) around the circul Start Opptential energy battery boosts energy by $\Delta U = 9.4V = 8. (1.5V)$ Charge moves easily through wire change loses everygy / it takes work to move through resister change arrives back at bottery at low every \mathbf{b} $5V$ $28 = 20 - 1$ $525V \alpha$ α \mathbf{b} Postion \subset \overline{d} α

Look at resistor and apply Ohn's Law $\Delta V = IR$ $SV = I(201)$ $I = 5V$ 0.25 A