Chapter 22: Current and Resistance

22.1 A Model of Current & 22.2 Defining and Describing Current (review) We now consider systems out of equilibrium. What happens to charge carriers of you apply an electric field ? They tend to move. l.g. consider a wire Current Ð $(+) \rightarrow$ $(\overline{+})$ (-)Count how many charger DQ pass through This surface in atime st Define current $I \equiv \Delta Q$ Units: Louloubs = Amperes = Amps = A. Common units = 1 mA = 10⁻³ A Household circuits \$ 20 A or 30 A.

22.4 Connecting Potential and Current

Moving charges typically encounter resistance - impunties & imperfections Net fat $\ge \vec{E}$ duft average speed ~ 10 m/s, But man Alisions / stop & state Drift speed ~ O.Imm/s Quantity That resistance. Two main factors: material and geometry , area A High () \longrightarrow FLow V I = current through device A = cross - sectional area j = current density = I/A (Amps m² (a local, microscopic property SV = applied voltage difference L = length E = electric field

What sets 3? Applied I and The material's resistivity p j = L EPP= resistivity Units: $p = \frac{E}{J}$ $\int \int \frac{1}{2} = \frac{V}{A} \frac{1}{m^2} = \frac{V}{A} \cdot m = \Lambda \cdot m$ p is a property of a matrial. If p = constant (i.e. in dependent of E) then we say the matrial is "Ohmic." It obeys The microscopic version of Ohm's Law $J = \int E$ Tables:

Table 25.1 Resistivities at Room Temperature (20 °C)

Substance		$\rho(\Omega \cdot \mathbf{m})$	Substance	$\rho(\Omega \cdot \mathbf{m})$
Conductors			Semiconductors	
Metals	Silver	1.47×10^{-8}	Pure carbon (graphite)	3.5×10^{-5}
	Copper	1.72×10^{-8}	Pure germanium	0.60
	Gold	2.44×10^{-8}	Pure silicon	2300
	Aluminum	2.75×10^{-8}	Insulators	
	Tungsten	5.25×10^{-8}	Amber	5×10^{14}
	Steel	20×10^{-8}	Glass	1010-1014
	Lead	22×10^{-8}	Lucite	>10 ¹³
	Mercury	95×10^{-8}	Mica	1011-1015
Alloys	Manganin (Cu 84%, Mn 12%, Ni 4%)	44×10^{-8}	Ouartz (fused)	75×10^{16}
	Constantan (Cu 60%, Ni 40%)	49×10^{-8}	Sulfur	1015
	Nichrome	100×10^{-8}	Teflon	>10 ¹³
			Wood	$10^{8} - 10^{11}$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

TABLE 22.1 Resistivities of materials				
Material	Resistivity (Ω • m)			
Copper	$1.7 imes 10^{-8}$			
Aluminum	2.7×10^{-8}			
Tungsten (20°C)	$5.6 imes 10^{-8}$			
Tungsten (1500°C)	$5.0 imes 10^{-7}$			
Iron	9.7×10^{-8}			
Nichrome	$1.5 imes 10^{-6}$			
Seawater	0.22			
Blood (average)	1.6			
Muscle	13			
Fat	25			
Pure water	2.4×10^{5}			
Cell membrane	3.6×10^{7}			

Macroscopic Olim's Law: orea A Ē Higl V Low (AV) $J = \frac{1}{P} \frac{F}{F}$ $\frac{\overline{I}}{A} = \frac{1}{P} \left(\frac{\Delta V}{I} \right)$ $= \begin{pmatrix} A \\ PL \end{pmatrix} (\Delta V) \approx \Delta V = I \begin{pmatrix} PL \\ A \end{pmatrix}$ T corpore to $\frac{T}{R} = \frac{1}{R} \Delta V = \frac{1}{R} R$ for a cylinder R= pL A units [R] = [<u>L·m]·m</u> <u>L</u> $\begin{array}{ccc} Macroscopic & form of Ohn's Law \\ \Delta V = I R \\ \\ \text{Units } R = \Delta V \Rightarrow V = Ohns = - h \\ \\ I \Rightarrow A \end{array}$

common units: 10³ A= 1k A common voltager ~ V common currents $15^3 A = 1 m A$ Symbol -MM-

Cool application: Example 22.16 Body composition: muscle and fat have different resisterities. Measurements of p for a fixed geometry can tell about the relative corporation.

22.3 Batteries and emf

emf = electromotive force - a terrible name! emf = & = a device in a circuit that makes current flow from a low potential to a high potential (l.g. a battery.) Text talks of a " charge excalator " Symbol -(Read) Simple circuit **D**-P. L. Reinston R follow a charge go Volt meter $\Delta V =$ on its joung 1.5 V 4 around the curcul Start Opstential energy battery boosts energy by $\Delta U = q_0 \Delta V = q_0 (1.5 V)$ charge moves easily through wire charge loses energy / it takes work to move through resista charge arrives back at bettery at low every b 5V 2 R= 201 E25V a a Ъ Position d a

Look at resistor and apply Ohm's Law $\Delta V = IR$ 5V = I(20-2) $\frac{I=5V}{20n} = 0.25A$