

hook at resistor and apply Ohn's Law
$$\Delta V = IR$$

$$5V = I(20.2)$$

$$\frac{T = 5V}{20R} = 0.25A$$

22.6 energy and power
In I Second, how much energy did the battery
Supply? $\Delta U = 9. \Delta V$
$\Delta V = 5V = 5 J/c$
80= I.Jt
80= I·st 80= 0.25 4/2 0 12 = 0.25 C
△U= (0.25C) (55/c) = 1.25 J
What to the Power - the rate at which the
battery supplied energy?
battery supplied energy? P= ΔU = $I \cdot \Delta t \cdot \Delta V$ = $I \cdot \Delta V$ Δt = Δt
Δt^{2} Δt
$P = (0.25 C) \cdot (5 J) = 1.25 J \cdot 1.25 W$
General Rule: P= I. DV
what happened to that energy? It was
dissipated in the resistor
$P = I \cdot (-5V) = -1.25W$
This is called Jovle Heating.

A then the forms for a resistor:

Use Olin's Law DV=IR, or
$$I = \frac{\Delta V}{R}$$
 $P = I \cdot (\Delta V) = I \cdot (IR) = I^2 R = \frac{(\Delta V)^2}{R}$

$$P = I(\Delta V) = I^{2}R = \frac{(\Delta V)^{2}}{R}.$$

But the general rule is $P = I(\Delta V)$

electrical softey: at a household 120V out let copable of supplying 20A

Pmax = (20 A)(120V)= 2400 W-2lot!

$$E = ?$$

$$E = ?$$

$$I = ?$$

$$R = \frac{\Delta V}{I} = \frac{\mathcal{E}}{I} = \frac{110V}{9.09A} = 12.1 - 2$$

Power supplied by outlet:
P = &I = (10V) (9.09A) = 1,000 W
Power dissipated by toaster
P= I2R= (9.09A)2(12.12)= 1,000 W
Example: Ch22-nichrome-wire-pdf.