23.1 Circuit Elements and Diagrams

 Read, and watch the pre-lecture video. We will encounter these issues as we discuss specific circuits.

23.2 Kirchhoff's Laws

Kirchhoff's Voltage Law (KVL): The sum of voltage drops around a closed loop $= 0$. This is really a conservation of energy statement. When a charge completes a loop around a circuit, it ends up back where it started.

Kirchhoff's Current Law (KCL): The sum of currents into a junction = the sum of currents leaving a junction. This is really a statement of conservation of charge. There is no build-up of charge at a junction.

These are best illustrated through applications.

23.3 Series and Parallel

Start with a simple circuit $\frac{c}{1}$ what is I ? $\overline{\Uparrow}$ $I = \sqrt{4V} = \sqrt{600}$ measured $\frac{E}{1}$ $\frac{E}{2k^2}$ $\frac{2h\Lambda}{\Lambda}$ across resista K $\sqrt{1 + \frac{1}{2}}$ a d a

 $KVL: a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow a = 0 \text{ Vo1}$ $G + D - \Delta Y + O = O$ $\sum_{i=1}^{n}$ gain in battey lose in resistor $\Delta V = \mathcal{C} = 5$ Apply 0hm's Law to the resistor $ZV = I R$ $L = \Delta V$ R akm 2.5 m $/$

I is the same everywhere in this circuit. Note on units $1k\Lambda = 10^{3} \Lambda$ $1mA = 10^{-3} A$ $1 k \Omega (1 m A) = 10^{3} A - 10^{-3}$ \overline{A} $1 \Omega \cdot A = 1V$

Power considerations. Power supplied by the battery
P = IE = (2.5mA) (5V) = 12.5mW P

ves dissipated by the resistor Power dissipated bythe resistor

They match!

They match

Series Example

 $E210V$ $R_i = 1k_1$ $R_2 = 2k_2$ \mathcal{I} \mathcal{I} I A Serie: Same current $rac{100}{100}$ R.
Tha goes through first one then the other M_{max} $\begin{array}{c} 2k_{2} \\ 4k_{1} \end{array}$ $Q_{\text{wstion}: \text{what} \& \text{I?}}$ $(\rho_{\circ}\parallel m \pm 2V)$ KVI $\mathcal{E} - \Delta V_1 - \Delta V_2 = 0$ $E = IR_1 - IR_2 = 0$ $E = I(R_i + R_i)$ $L = \frac{C}{C} = \frac{10 V}{2} = \frac{3.33 mA}{2}$ $K, \frac{1}{K}$) $\sqrt{k} \Omega + 2k \Omega$ As far as the battery is concerned, this series combination acts as if the series were replaced by a single resistor $R_s = R_1 + R_2 = 3 k_1$ Series equivalent:

ERS This curcut has the same

 R_{1} R_{2} R_{3} Generalized Series equivalent:

$$
R_s=R_1+R_2+R_3+\ldots
$$

(6. 201) and label voltages):

\n
$$
\Delta V_1 = \Gamma R_1 = (3.33 \text{ mA}) \cdot (12 \text{ A}) = 3.33 \text{ V}
$$
\n
$$
\Delta V_2 = \Gamma R_2 = (3.33 \text{ mA}) \cdot (22 \text{ A}) = 6.67 \text{ V}
$$
\nand: $\Delta V_1 + V_2 = 10 \text{ V}$

\nalso – label m diagram.

Power considerations B attery : $P_g = \mathcal{EI} = (10V)(3.33mA) = 33.3mW$ Resistor 1: $P_1 = I^2 R_1 = (3.33 \text{mA})^2 (1 k A) = 11.1 \text{m W}$ $\left(\begin{array}{ccc} 0 & P_i & \mathbb{Z} \ \Delta R & \mathbb{Z} & \mathbb{Z} \end{array}\right)$ = (3-33mA)(3.33V) = 1).1mW Resistor 2: P_{2} = $I^{2}R_{3}$ = (3.33 mA)² (2k 12) = 22.2m W $(OR: P_2 = I\Delta V_2 = (3.33mA)(6.67V) = 22.2mW)$ $T s f a l$ $P_1 + P_2 = 11.1 m W + 27.2 m W = 33.3 m W W$

 $\frac{2}{10^{10}}$ Is $\frac{10V}{2}$ $\frac{2}{10}$ $R_1 = 1k1$ 1_t \uparrow \uparrow \uparrow R_{2} akm $10¹$ $E = \frac{F_1}{F_1}$ $R_1 \leq \frac{F_2}{F_1}$ R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_9 R_9 R_1 R_2 R_3 R_4 R_5 R_7 R_8 R_9 R_1 R_2 R_3 R_4 R_5 R_7 R_8 R_9 R_1 R_2 R_3 R_4 R_5 R_7 ϵ current goes \leq through one or the I ov ov other, but not Question: what is I_t ? (Poll on I dv) both KCL : ats junction : $I_t = I_t + I_2$ What are I, al I ? Use Olm's Law $\frac{L_1 = \Delta V_1}{R_1} = \frac{E}{R_1} = \frac{10V}{16.9} = \frac{10m}{16.9}$ $h_{1} = 1$ L_2 $\frac{\Delta V_2}{R_2}$ $\frac{E}{R_2}$ $\frac{10V}{2kA}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{10V}{2kA}$ $L_f = I_1 + I_2 = 10 \text{ mA} + 5 \text{ mA} = 15 \text{ mA}$ From the perspective of the battery, this is equivalent to ^a single resistor Rp $I_t = \frac{\mathcal{E}}{\mathcal{R}_2} \Rightarrow \mathcal{R}_P$ t $E = 100$ $\frac{22}{1}$ $\frac{28}{1}$ $\frac{100}{5}$ $\frac{22}{1}$ $\frac{26}{1}$ $\frac{22}{1}$ $\$ $\frac{75}{9}$ MA Parallel example

Symbolically: Use KCL $=$ I_1 + I_2 $rac{6}{100} + 6$ R_P R_1 R_{2} $\begin{array}{c|c|c|c|c} \hline \quad & \quad & \quad & \quad \\ \hline \quad & \quad & \quad & \quad \\ \hline \quad & \quad & \quad & \quad \\ \hline \end{array}$ R_{1} R_{2} Generalized parallel resistance $R_{\rm u}$ k a MAA R 3
VAN $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$ $e.ghe \frac{1}{Rp} = \frac{1}{1kAl} + \frac{1}{2kAl} = \frac{2+1}{2kAl} = \frac{3}{2kAl}$ $R_{p} = 2k_{\perp} = 6.667k_{\perp}$ handy parallel trick: if RIERZER, Rp= = R. R_s > (all the R's) R_ρ < (all the R's)

Power considerations Battey: $P_{\epsilon} = \mathcal{E} I = (ov)(15mA) = 150mW$
 $R_{1} = P_{1} = I_{1}(\Delta V_{1}) = I_{1}^{2}R_{1} = (10mA)^{2}(1kA) = 160mW$ $R_{2}: P_{2} = I_{2}(\Delta V_{2}) = I_{2}^{a}R_{2} = (5mA)^{2}(2k\Omega) = 50mW$ $P_1+P_2=100$ m $W+50mW=150mW$

Next: combinations. Sometimes can replace combinations by simpler series or parallel equivalents.