23.6 capacitors in series and parallel

Capacitor cricuit $symb$ ol: -1 reminds us of the parallel plates. Basic Capacitor circuit: 1+9 c de steady state, no current up to $V_c = \frac{1}{2}$ $\text{C} \text{C}$ $\text{C} \text{C}$ $\text{C} \text{C}$ $Q = C_{\epsilon}$ Parallel combination Q_1 Q_2 ζ $\frac{1}{\zeta}$ ζ $\frac{1}{\zeta}$ ζ $\frac{1}{\zeta}$ what is the net effective corporations? \mathcal{E} $\overline{c_{p}$ = The total charge stood is $Q\rho = Q_1 + Q_2$ Use the relation $Q = C(\Delta V)$, while recognizing $\Delta V = \varepsilon$ for foot capacitors.

 $Q_{\rho} = Q_{1} + Q_{2}$ C_{ρ} $C_{\rho} = C_{\rho}$
 $C_{\rho} = C_{\rho} + C_{\rho}$ $\mathbb{Z}_{\geq 0}$ recall for parallel plates: C = Est. we have essentially added more area. Series combination st charge $C_1 + Q_1$ Q_{s} $Q₂$ c_{2} $Q_{s} = C_{s}\xi$ $Q_1 = Q_2 = Q_2$ $KVL: \mathcal{L} - \Delta V_1 - \Delta V_2 = 0$ $\Rightarrow \mathcal{E} = \mathbb{Q}_s$ $Q_{5} = Q_{1} - Q_{2} = 0$ C_5 C_1 $c_{\mathcal{2}}$ \perp \perp \perp Serie equivalent $\begin{array}{|c|c|c|c|c|c|}\n\hline \begin{array}{|c|c|c|c|}\n\hline \begin{array}{|c|c|c|}\n\hline \begin{array}{|c|$ combined distances

23.7 RC CircuitsImportant application = timing. Units note $[RC] = \frac{1}{A} \cdot F = V$, $C = \frac{1}{C/s}C$ = seconds Discharge: Consider a capacità initially charged to voltage Vo, with charge Qo = CVo. \int close at time $t=0$. $+Q$ Let $q =$ Clarge at $-\widehat{\sqrt{\cdot} }$ any in stant initially i current flows as charges leave +
plate. F³ R 3 plate u \mathcal{But} ... as charges leave, ΔV = $\frac{\theta}{c}$ decreases, so the voltage across the resistor decreases and I decreases charge Get exponential decay $\sqrt{2}$

time

 $q = Q_0 e^{-t/c}$
also $\overline{t} = V_0 e^{-t/c}$
also $\overline{t} = \frac{V_0}{R} e^{-t/c}$ a bit about exponential de cay: $9 = e^{-t/\kappa c}$ 8 $\overline{}$ $\frac{2}{6}$ $\frac{1}{\sqrt{2}}$ \overline{O} $1 - RC$ $e^{-1} = 1/e = 0.368$ $e^{-2} = 0.135$ $2 - R C$ e^{-3} = 0.0498 (~5%) $3 - RC$ e^{-5} = 6.0067 (< 19) S . RC

 $RC =$ "time constant" = C $l.g. R = 10k\Lambda C = 0.01nF = 10^{-11}F$ $C = RC = 10^{4} \text{A} \cdot 10^{-1} F = 10^{-7} \text{A} = 0.1 \text{a} \cdot s$ 2.9. R = 500 k 2 C = 5uF
 $C = \sqrt{6}$ = 500 x 10 1 - 5x10 F = 2.50 RC circuits are widely used for timing.

Question: how long closes it tale to discharge? There is no exact answer. It depends on you precise críteria. aptu ~32, 95% is gone. after - 52, 7992 is gone.

Another description : half life. How long does it take to go down to half of what you have (e.g. 6V-3V, a 4U->2V, etc.)

 $\frac{q=Q_{o}e^{-\frac{t}{c}}}{\frac{C V_{o}}{\frac{1}{c}V_{o}} - V_{o}}e^{-\frac{t}{c}}}{\frac{1}{c}V_{o}}$ $\frac{1}{2}$ = $e^{-t/\gamma}$ $ln(1/2) = -t/2$ $ln 2 = t/z$ $t_{\text{1/2}}$ = 2 ln 2 , when μ 2= 0.693

Application Store and release energy over particular time interval $Recall$ $U = \frac{1}{6}$ decrease over time $L = \mathcal{RC}$