24.7: Magnetic Fields Exert Torques on Dipoles

Forces and Torque on a current loop in a uniform magnetic field.

Assume \overline{B} = uniform and to the right. Arectangular $\frac{cunent}{2}$ loop is in the χ -y plane. What happens $\left(\begin{smallmatrix} 1\\4 \end{smallmatrix}\right)$ τ \leq (1) Ly B $I \times I$ \vee $\widehat{\mathcal{Q}}$ \overline{a} Lx ^y

Poll: what are the magnitude and direction of the force on wire segment 1?

 $\tau = F_1\left(\frac{L_{\gamma}}{2}\right) + F_2\left(\frac{L_{\gamma}}{2}\right)$ $\tau = \pm$ LxLy B area generalize : magnetic dipole moment $\overline{\mu} \equiv \bot \cdot ($ area), direction is perpendicular to the loop, parallel to the B that the loop tends to create $\frac{1\gamma\mu}{\lambda}$ $|\gamma|= \mu B$ sin c \overrightarrow{B} (due to other sources not shown \overline{a}

Result: the external field Bexents a torque that tends to align in with the applied $\overrightarrow{n\mu}$ tends to align e g \overline{a} $\overline{\mu}$ کا
د S N S N in is a magnetic dipole. Just like a corpass S N it's north pole points along magnetic field lines $\overrightarrow{\mu}$ ENERGY $\hat{\mathbf{\Theta}}$ $\overline{\mathscr{C}}$ higher energy \overrightarrow{B} au B Lower energy \overrightarrow{L} Lowesterly θ = \degree C $\frac{1}{\mu}$ $-\overrightarrow{B}$ Highest energy $\theta = 180^6$

Potential energy = $U = -\overrightarrow{\mu} \cdot \overrightarrow{B} = -\mu B \overrightarrow{\omega} \theta$ Unin = $\frac{-\mu B}{B}$ difference = 2 μ $U_{max} = +\mu B$

atomic example:

 $\mu = \mu_B$ = "Bohr magneton" = +xpical scale of atomic magnetic moments. $M_{\beta} = 9.27 \times 10^{-24} \text{ A} \cdot \text{m}^2$ apply $B = 1.5 T$ (big lab magnet) Energy anti-aligned = $\mu_{\beta}B =$
Umay = $(9.27 \times 10^{-24} A \cdot m^2)(1.5T) = 1.39 \times 10^{-23} J$ Energy aligned = $-\mu_{\beta}B$ = -1.39 X10⁻²³J $\Delta U = 2.78 \times 10^{-23} J \times 1.602 \times 10^{-9} eV$ I J

 ΔU = 0.000 17 e V This is small but detectable - detecting such flips is at the heart of NMR/MRI techniques.

Atomic picture: (really cheating here!) \bigoplus_{AVC leus $I = \frac{chage}{Time} = \frac{e}{\pi} = \frac{e}{\frac{2\pi r}{r}}$ $\frac{1}{1}$ = $\frac{eN}{1}$ 2π \sim

Express in terms of angular nomentum $L = m N N$ $I = e^{\frac{L}{2m\Lambda}} = L$ $2\pi r$ $2\pi m r^2$ μ = I . area = $I(\pi r^2)$ = eL $2M$ Quantum Mechanics: Don't really have clear cércular orbits, but we do have angular moventum. $M_{B} = e^{\frac{u}{\lambda}} \frac{(1.602 \pi i \delta^{19}c)(1.05 \times 10^{-37}kg m^2/a)}{3(0.10 \times 10^{-31}m^3)}$ $2m$ e 2 9.11 $x \cdot 0^{-31}$ kg $M_{\beta} = 9.27 \times 10^{-24} \text{ A} \cdot \text{m}^2$

24.8: Magnets and Magnetic Materials

A rich and complex field. Focus on one application: Ferromagnetism. In some materials, the material has a permanent magnetic dipole moment. (Well, not permanent, but persistent under normal room temperature pressures and conditions.). These dipole moments tend to align with an applied magnetic field, and *also* produce their own magnetic field.

.

N s Disordend The atomic magnetic moments due to unpaired electrons point in random directions. The sample has no net magnetic moment. Apply an external magnetic field $\overline{}$ ىر \leq A magnetic moment will tendto align

Real materials are messiers, and typically

attractive force.