

Applying Lenz's law to get the direction entails three steps:

- 1. What was the original flux through the loop?
- 2. How did that flux change?
	- 3. Which direction should the current flow to *oppose* that change?

Examples posted on Moodle:

- 1. Ch25-Faraday-1
- 2. Ch25-Faraday-2
- 3. Ch25-generator. (Derivatives won't be on the test, but this does illustrate how flux can change due to the angle changing.)

 (a) Region of. increasing \vec{B} Faraday's Law 2 time - changing B Induced current Can Create Conducting loop 25.5 Electromagnetic Waves (b) Region of increasing \vec{B} Even in The Induced $\frac{1}{2}$ sence of a loop electric field \vec{E} that induced electric field is present Similarly it turns out ^a time changing Can Create a E χ $\overline{\chi}$ X' $\bm{\times}$ ^c Regionof induced magnetic \overrightarrow{E} interesting of \overrightarrow{R} \overrightarrow{R} $\widetilde{\chi}$ χ $\boldsymbol{\times}$

These two effects are coupled in the production of electromagnetic waves. We discussed light as a wave back in Chapter 17. $c = \lambda f$ still holds. Here, we focus on $E+M$ aspects. \bigcup Light is a transvers wave with frequency f and wavelength λ . Wavelength λ E_0 $\vec{\mathcal{V}}_{\rm em}$ B_0 2. \vec{E} and \vec{B} are perpendicular to each other and to the direction of 3. \vec{E} and \vec{B} are in phase; travel. Thus an that is, they have electromagnetic wave is a matching crests, troughs, and zeros. transverse wave. 2019 Pearson Education, Inc.

2) The speed of light in a vacuum is constant: $C \approx 3.0$ \times 10 8 m/s $New:$ $C = \frac{1}{\sqrt{max}}$ (i.e. related to basic) F ^M properties

3) E=CB in magnitude ⁴ The direction of propagation is given by $\vec{E} \times \vec{B}$ $5)$ The direction of \overrightarrow{E} is called The polarization 6) Electromagnetic waves carry energy $Inensity = \frac{Power}{Area} = \frac{1}{2}C\epsilon_0 E^2 = \frac{1}{2\mu_0}CB^2$ Simplest example Sinusoidal wane in the $+\alpha$ direction. ∂ $\overrightarrow{E} = \hat{j}E_0\sin\left(2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right)\right)$ $\frac{L}{K}$ ں
ک Z $\overrightarrow{B} = \widehat{k} B_0 \sin \left(2\pi \left(\frac{x}{\lambda} - \frac{t}{T} \right) \right)$ $E X \overrightarrow{B}$ points along $+\alpha$

99.9 - The Hawk

The radio station broadcasts at 99.9 MHz with a power of 50,000 Watts. What is the wavelength of the radio waves? What are the maximum electric and magnetic fields at a distance of 1.25 kilometers from the station? (Assume the power radiates evenly in all directions.)

 $\lambda = ?$ (a) $\frac{\lambda = c}{f} = \frac{3 \times 10^{8} m/s}{99..7 \times 10^{6}/s} \approx 3.00 m$ (b) what are the amplitudes of the electric and magnetic fields 1.25 km away? assure pourer radiates in all directions $50\sqrt{arc}$ are area = 4 πr^2 $I = P 50,000 W$
A 4 π (1250m)² $I = 0.00255 W/m²$ $\frac{1}{a}$ ϵ _p ϵ \overline{E} \Rightarrow ϵ = $\sqrt{2}$ ϵ_{o} = $2 (0.00255 W/m²)$

8.65 X16 $\frac{C^{2}}{N-m^{2}}$. 3X10⁸ m/s $1.39 V$ \mathcal{F} $=\frac{E}{C}=\frac{1.39 V/m}{3x_{10}gm/s}=\frac{4.62x_{10}^{-9}}{}$ \mathcal{B}

Laser Pointer

L.

A 0.24 mW red laser pointer (λ = 655 nm) is focused onto a spot 3 cm^2 a distance 5.0 m away. What is the frequency of the light wave? What is the intensity of the laser? What are the maximum values of the electric and magnetic field in the spot?

$$
\lambda = 655 \text{ m} \text{m} = 655 \times 10^{-7} \text{m}
$$
\n
$$
C = 3.0 \times 10^{-8} \text{m/s}
$$
\n
$$
f = \frac{C}{\lambda} = \frac{3.0 \times 10^{-8} \text{m/s}}{655 \times 10^{-9} \text{m}} = 4.58 \times 10^{-19} \text{ Hz}
$$
\n
\nArea A = 3.0 cm³ × 10 m/s = 3 × 15⁻⁷ m s
\n
$$
P = 0.24 \text{ m} \text{W} = 0.24 \times 10^{-3} \text{ W}
$$
\n
$$
T = P = 0.24 \text{ m} \text{W} = 0.24 \times 10^{-3} \text{ W}
$$
\n
$$
T = \frac{P}{A} = \frac{6.24 \times 10^{-3} \text{ W}}{3 \times 10^{-7} \text{ m}} = 34.6 \text{ V/m}
$$
\n
$$
B = \frac{E}{C} = \frac{24.6 \text{ V/m}}{3.0 \times 10^{8} \text{ m/s}} = 8.19 \times 10^{-8} \text{ T}
$$
\n
\nLashy, note. Solar identity on Earth's surface
\n
$$
\frac{Lashy}{\lambda} = 1000 \text{ W/m}^2
$$
 on a sunny day in Earth.