
Ch. 28 Part 2
Matter Waves
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28.4: Matter Waves

We have seen light has properties of both a particle and a wave. Is the reverse true?
Can a particle (such as an electron, proton, etc.) have properties of both a particle and
a wave?

deBroglie (1924) proposed: Yes!. The same relations

p = h
λ
, or λ = h

p

hold for both particles and waves.

p = momentum, h = 6.63× 10−34 J s = Planck’s constant.

• If p is of any appreciable size, as for a macroscopic object, then λ is tiny. If λ is
less than the size of the object, it’s not obvious it makes any sense.
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28.4: Matter Waves

Implications:

1. Interference and Diffraction

2. Energy Quantization

3. Uncertainty
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Electron Diffraction

Suppose you accelerate an electron through a potential difference of ∆V = 50.0V.
What is the wavelength of the electron?

Plan:

1. Find the speed v from the energy

2. Find the momentum from p = mv .

3. Find the wavelength from λ = h
p .
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Electron Diffraction

0V 50.0V

	
e

Ei = Ef

Ki + Ui = Kf + Uf

0 + (−e)Vi = 1
2mv2

f + (−e)Vf

0 + (−e)(Vi − Vf ) = 1
2mv2

f

vf =
√

2e∆V
m =

√
2× (1.60× 10−19 C)× (50.0V)

9.11× 10−31 kg = 4.19× 106 m/s

p = mv = (9.11× 10−31 kg)× (4.19× 106 m/s) = 3.82× 10−24 kgm/s

λ = h
p = 6.63× 10−34 J s

3.82× 10−24 kgm/s = 0.173 nm
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Electron Diffraction

What can you do with such short waves? Send them through slits of various sorts and
observe interference and diffraction. Note this wavelength is simlar to what we
calculated for a typical X-ray, but with an energy of only 50 eV, rather than the
7150 eV we calculate for a 0.173 nm X-ray photon.
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28.5: Energy is Quantized

If we think of particles as having wave properties, then our work with standing waves
suggests that if the wave is confined to a certain length L, then only certain
wavelengths λ will be observed.

A Particle in a One-Dimensional Box

Consider a particle confined to a one-dimensional box of length L. Assume that the
“wave” has to be zero at each end. What are the allowed wavelengths?

7



28.5: Energy is Quantized

λ1 = 2L λ2 = 2L/2 λ3 = 2L/3

Only certain λ values are allowed =⇒ only certain p = h/λ values will be observed

=⇒ only certain E = p2

2m values will be observed. (More details in a moment.)
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28.6: Energy Levels and Quantum Jumps

Two basic ideas:

1. There are certain allowed energy “states”

2. Transitions between those states can be accompanied by the absorption or
emission of a photon:

hc
λ

= |∆E |

Example: Suppose there are two states: Ei = 4.00 eV and Ef = 1.00 eV. A
transition between the two is accompanied by the emission or absorption of a
photon of energy 3.00 eV, and wavelength

λ =
∣∣∣∣ hc
∆E

∣∣∣∣ = 1240 eV nm
3.00 eV = 413 nm

3. Corollary: Measuring wavelength λ can tell about available energy states.
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Particle in a Box Example

Suppose we confine an electron (mass m = 9.11× 10−31 kg) to a box of length
L = 0.800 nm. Consider the 3 lowest-energy states. What are the allowed wavelengths,
energies, and photon energies?

λ1 = 2L λ2 = 2L/2 λ3 = 2L/3

The allowed wavelengths are given by the usual standing wave condition
L = (integer) ∗ λn

2 =⇒ λn = 2L
n :

λ1 = 2L
1 = 1.60 nm λ2 = 2L

2 = 0.800 nm λ3 = 2L
3 = 0.533 nm
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Particle in a Box Example

λ1 = 2L λ2 = 2L/2 λ3 = 2L/3

The corresponding momenta are given by deBroglie’s relation pn = h
λn
.

p1 = 4.14× 10−25 kgm/s p2 = 8.28× 10−25 kgm/s p3 = 1.24× 10−24 kgm/s

Lastly, the kinetic energies are given by

En = 1
2mv2

n = 1
2

p2
n

m = p2
n

2m
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Particle in a Box Example

λ1 = 2L λ2 = 2L/2 λ3 = 2L/3

The resulting energies are given by En = p2
n

2m .

E1 = 9.41× 10−20 J E2 = 3.77× 10−19 J E3 = 8.47× 10−19 J

Converting to electron volts:

E1 = 0.588 eV E2 = 2.35 eV E3 = 5.29 eV

It is useful to draw an energy level diagram:
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Particle in a Box Example

Draw the different energy levels as horizontal lines. Transitions between states are
accompanied by photons, which are indicated as wavy lines in the diagram.

E1 = 0.588 eV

E2 = 2.35 eV

E3 = 5.29 eV
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Particle in a Box Example

E1 = 0.588 eV

E2 = 2.35 eV

E3 = 5.29 eV

4.70 eV

2.94 eV

1.76 eV

Each transition will be accompanied by a
photon. The transition from state 3→ 2
involves a change in energy
∆E32 = 5.29 eV − 2.35 eV = 2.94 eV. This
corresponds to a photon of wavelength

λ32 = hc
∆E32

= 1240 eV nm
2.94 eV = 422 nm
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Particle in a Box Example

E1 = 0.588 eV

E2 = 2.35 eV

E3 = 5.29 eV

4.70 eV

2.94 eV

1.76 eV

Each transition will be accompanied by a
photon. The largest energy jump is
accompanied by the shortest wavelength
photon.

λ3→1 = hc
∆E31

= 1240 eV nm
4.70 eV = 264 nm

λ3→2 = hc
∆E32

= 1240 eV nm
2.94 eV = 422 nm

λ2→1 = hc
∆E21

= 1240 eV nm
1.76 eV = 703 nm

Be alert that these are the wavelengths of photons emitted in the transitions between
states; they are not the wavelengths of the electron in those different states.
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Formal Results

For a particle of mass m confined to a one-dimensional box of size L, the allowed
energy states are given by the following set of steps:

λn = 2L
n

pn = h
λn

= nh
2L

En = p2
n

2m = n2 h2

8mL2

Transitions between two levels (e.g. ni → nf ) involve the emission or absorption of a
photon of wavelength

λphoton =
∣∣∣∣ hc
Ef − Ei

∣∣∣∣
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Overall Results

• Get reasonable scale of answers for atomic spectra for little effort.

• Do see quantization

• Doesn’t actually describe hydrogen (or any other atomic spectra) quantitatively

• Only 1-dimensional. Real atoms are 3-dimensional, and not simple boxes.

• Still, not too bad for such a simple model.
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What’s Next?

• More examples and applications

• Uncertainty

• Chapter 29: Move on to atomic energy levels.
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