
Experiment 6

Rotational Energy

6.1 INTRODUCTION

In this experiment, you will study energy conservation in a system that has both rotational
and translational motion. The experiment itself is straightforward: the gravitational po-
tential energy of a falling mass is transformed into translational kinetic energy of the falling
mass and rotational kinetic energy of a rotating platter. The challenge in the experiment
lays in connecting the quantities of interest for energy calculations, such as the speed of
the falling mass and the angular speed of the disk, to the quantities actually measured in
the experiment.

The apparatus is shown in Figure 6.1. A large platter rotates on a low-friction bearing.
Actually, what we refer to as “the platter” is made of two disks, held together by friction.
A small metal hub is attached to the platter. A string is wound around the hub. The
string is attached, via a pulley, to a hanging mass. As the mass falls, the platter rotates.
There is a small flag attached to the rotating platter; it passes through a photogate once
per revolution of the platter. By measuring the amount of time it takes the flag to pass
through the photogate, the speeds of the platter and the hanging mass can be inferred. By
counting the number of times the flag has passed through the photogate, the number of
revolutions can be inferred, so the length of the string unwound from the hub, and hence
the height of the hanging mass, can be calculated.

6.2 THEORY

The rotational kinetic energy of the rotating platter is

Krot =
1

2
Iω2,

1
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Figure 6.1: Apparatus for the rotational energy experiment.

where I is the moment of inertia of the spinning platter and ω is its angular velocity. The
kinetic energy of translation of the falling mass is

Ktrans =
1

2
mv2,

where m is its mass and v is its velocity. The gravitational potential energy of the falling
mass is

Ug = mgy.

Since there is no non-gravitational work in this system, energy is conserved,

Kroti +Ktransi + Ugi = Krotf +Ktransf + Ugf

or, more generally,

Krot +Ktrans + Ug = Etotal = constant.

Your goal is to calculate each of these terms, Krot, Ktrans, and Ug, as the mass falls, and
to check whether Etotal truly remains constant.
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6.3 MEASUREMENTS

6.3.1 Moment of inertia

The moment of inertia of a solid disk of mass m and radius r is

I =
1

2
mr2.

The spinning platter actually consists of two gray disks along with a the hub around which
the string is wound. You can pull the disks off the spinning apparatus. Measure the mass
of each disk on a scale and add them together to find the total mass mdisk. Find its radius,
rdisk, by measuring its diameter and dividing by 2. It will be helpful to work in standard
units (kilograms, meters, seconds); convert all measurements to these units as you work
through this experiment. Calculate the moment of inertia of the disk using I = 1

2mdiskr
2
disk.

The hub, because it is light and close to the rotation axis, has a very small moment of
inertia, around 0.000009 kgm2, and can be ignored in the calculation of I.

6.3.2 Angular size of the flag

See Figure 6.2 for an overhead view of the apparatus. Find the angular size of the flag, θflag.
This is the ratio of the width of the flag to the radius of a circle measured at the position
of the photogate sensor. This radius is used because this is where the measurement of the
flag will actually be made. Measure wflag and rphotogate and then calculate

θflag =
wflag

rphotogate
.

Angular size, θflag will have units of radians as long as wflag and rphotogate were measured
using consistent units.

For your uncertainty analysis below, you will need an estimate of the uncertainty in the
size of the flag, σwflag

. In principle, you could very precisely measure the flag width with a
caliper. However, this is difficult since it isn’t sturdy enough to tightly clamp the caliper
down. In this case, a ruler is the best option. Look carefully at the ruler and its smallest
subdivisions and use this information to estimate your uncertainty.

6.3.3 Radius of the hub

In your first experiment, described below, use the smallest part of the hub. Measure its
radius, rhub; you will need this later. The easiest way to do this is to measure its diameter
with a caliper and then divide by 2. Measure this where the string is would around the
hub (not at its rim).

Again, you will need an estimate of the uncertainty of this measurement. What is actually
needed is the distance at which the string comes off of the hub, the uncertainty of which
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Figure 6.2: Overhead view of the apparatus.
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is dominated by the width of the string and its precise position as it is wrapped around
the hub. Since the caliper is more precise than the ruler, this uncertainty is likely to be
smaller. Use the readout on the front of the caliper to estimate this uncertainty. How
many digits does it provide?

6.3.4 Hanging mass

Measure the mass of the hanging mass. Usually these are 50 g, but it would be good to
check. Don’t forget to convert to kilograms.

6.3.5 Measurements as the mass falls

Line up everything carefully. The string from the platter to the pulley should be horizontal,
and it should be aligned with the pulley (not coming in at an angle).

Launch Logger Pro then select File→Open→Probes & Sensors→Photogates→One Gate

Timer. If a box appears that complains about not finding the probe, click connect. This
usually fixes the problem.

In the Photogate Distance box, enter the angular size of the flag, θflag in radians. You
can leave the units in the box as meters. When doing velocity measurements later, you
will need to remember that the computer’s display of “m/s” should really be “rad/s.”

Carefully wind the string around the hub, minimizing overlaps.

Pres Collect to start data collection in Logger Pro.

Release the platter from rest while the flag is a short distance (say 1 cm) behind the
photogate. (That is, it should not be blocking the photogate, and it should pass through the
gate shortly after you release the platter. You can rotate the bottom platter independently
to line it up properly.) Stop the apparatus by hand before the mass hits the floor, and
then press stop in LoggerPro.

Each time the flag passes through the photogate, Logger Pro measures the time the flag
enters the photogate and the time the flag exits the photogate, from which it calculates the
Gate Time. It uses this time, along the value of θflag that you entered earlier, to calculate
the angular velocity of the disk, ω, in rad/s. This is listed as “velocity” on the Logger Pro

spreadsheet, probably with the incorrect units of m/s. You should get at least four such
measurements, or more when the smallest hub radius is used.

You will need these values of ω, along with the number of times the disk has rotated—0
for the first measurement, 1 for the second, and so on—for your analysis below. We will
refer to these measurements as ωn and the rotation number as n.
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6.4 CALCULATIONS

6.4.1 Energy calculations

Use Excel to analyze your data. Don’t use a calculator. Do calculations within Excel by
entering formulas into Excel cells. If you don’t know how to do this, ask your instructor to
show you. You may want to put constants used in your calculations—rdisk, m2, etc.—into
Excel cells so that you can refer to them in calculations.

Start by setting up a spreadsheet with one row per measurement and with the following
eight columns:

1. Rotation number, n.

Enter the numbers 0, 1, 2, . . . into successive rows.

2. Angular velocity, ωn.

Enter the measurements from LoggerPro.

3. Height of the hanging mass, yn.

Let’s take the height of the mass to be zero at rotation number 0. Each time the
platter makes a complete rotation, the mass falls by 2πrhub. (Convince yourself that
this is true.) Since it is falling, its height is negative:

yn = −2πrhubn.

Fun fact: in Excel, you can write PI() for the value of π.

4. Velocity of the hanging mass, vn.

This is related to the angular velocity of the disk by (convince yourself this is true):

vn = rhubωn.

5. Potential energy of the hanging mass, Ugn .

This can be calculated from the height of the mass by:

Ugn = mgyn.

Since yn is negative (except for y0 = 0), Ugn is also negative.

6. Translational kinetic energy of the hanging mass, Ktransn .

This can be calculated from the hanging mass velocity:

Ktransn =
1

2
mv2n
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7. Rotational kinetic energy of the rotating platter, Krotn .

This is related to angular velocity by:

Krotn =
1

2
Iω2

n.

8. Total energy, En.

En = Ugn +Ktransn +Krotn

Compare the various energies you have calculated. Which are largest in magnitude? One
of them is likely negligible; which is it? How are the other two energy terms related to
each other? Qualitatively, does it seem like energy is conserved? If your Etotal numbers
show wide deviations from each other, try go back and to figure out what has gone wrong.

6.4.2 Uncertainty calculations

To make a more rigorous check of energy conservation, we need to consider the uncertainties
in the energy measurements.

Hopefully you decided that the kinetic energy of the falling mas is relatively small, so we
will ignore that in the uncertainty calculations.

What is the uncertainty in the potential energy of the falling mass?

Potential energy Ugn is proportional to yn, which in turn is proportional to rhub. Guessing
that this is the dominant uncertainty in the calculation of Ugn , you can estimate the
uncertainty in each Ugn calculation by∣∣∣∣σUgn

Ugn

∣∣∣∣ = ∣∣∣∣σrhubrhub

∣∣∣∣ ⇒ σUgn
=

σrhub
rhub

|Ugn|

Add a column to your Excel spreadsheet with this calculation.

What is the uncertainty in the kinetic energy of the rotating platter?

Kinetic energy Krotn is proportional to ω2
n, which is proportional to θ2flag, which in turn

is proportional to w2
flag. Guessing that this is the dominant uncertainty in Krotn , you can

then estimate the uncertainty in each Krotn calculation by∣∣∣∣σKrotn

Krotn

∣∣∣∣ = 2

∣∣∣∣σwflag

wflag

∣∣∣∣ ⇒ σK1n = 2

(
σwflag

wflag

)
Krotn

Add a column to your Excel spreadsheet with this calculation.
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Thinking about the uncertainties

Which uncertainty is most important? How does the variation in Etotal compare with the
largest uncertainty calculation? Is the difference between the largest and smallest Etotal less
than 3 times the largest uncertainty? This is a good, if crude, check on energy conservation.

6.4.3 Make a plot

Have Excel make a single scatter plot showing Ugn , Krotn , and Ktransn versus n.

6.5 THAT WAS FUN, LET’S DO IT AGAIN

Now that you have your spreadsheet all set up, it is easy to repeat the experiment with
other parameters. Save a copy of your spreadsheet before doing this, and use a fresh copy
(with the equations in place) to analyze your next set of data.

Use a larger hub radius and/or a larger hanging mass. Repeat the measurements and
calculations as described above. You should only need to change a few data numbers in
your spreadsheet. Is energy conserved this time? Did this work out better or worse than
your first experiment.

As always, write up a short summary of your results in your lab writeup, along with a
discussion of sources of uncertainty and suggestions for improving this experiment.
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