
Experiment 8

Periodic Motion: The Pendulum

8.1 INTRODUCTION

In this experiment, you will study the motion of a physical pendulum. You will model that
motion and explore to what extent, if any, the physical pendulum exhibits simple harmonic
motion. Finally, you will look at the role of damping in this system.

8.2 THEORY

For an object undergoing simple harmonic motion, the position θ as a function of time is
given by

θ(t) = A cos(ωt+ ϕ) , (8.1)

where A is the amplitude of the motion, ω is the angular frequency, and ϕ is the phase
angle. For simple harmonic motion, A and ϕ are set by the initial conditions, and ω is
determined by the physical properties of the system. In particular, ω is independent of A
and ϕ.

In this experiment, you will look at the motion of a physical pendulum. This pendulum
consists of a long thin rod attached to a pulley. A brass mass is attached about 1/4 of the
way from the end. The angular position of the pulley can be read by LoggerPro so you
can directly measure θ(t).

For small oscillations, the angular frequency of the pendulum is given by

ω =

√
Mgd

I
, (8.2)

where M is the mass of the pendulum, I is the moment of inertia of the pendulum about
the axis of rotation, and d is the distance from the axis of rotation to the center of mass.
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In this experiment, you don’t have an easy way to measure I, M , or d (since it’s not easy
to measure the properties of the pulley), so we will focus on more general issues of periodic
motion instead.

8.3 EXPERIMENT

8.3.1 Modeling Periodic Motion

In this portion of the experiment, you will measure θ(t) and then try to fit Eq. 8.1 to the
data in order to determine A and ω.

Getting Started

1. Start LoggerPro. Open up the experiment file Probes and Sensors -> Rotary

Motion Sensor -> Rotary Motion angular.cmbl.

2. Next, you need to adjust the sensor so that it doesn’t re-zero itself at the beginning
of each run. Select Experiment-> Set Up Sensors -> LabQuest Mini:1, and then
click on Dig/Sonic1. Make sure there is no check mark next to Reset on Collect.
If there is, click on it. Make sure the units are set to rad. Close the LabQuest Mini
window.

3. Unfortunately, the rotary sensor frequently loses track of where the appropriate lo-
cation for 0 radians should be. Fortunately, it’s easy to manually re-zero before each
trial. From the main menu, select File -> Settings and make sure the box for
Show Zero Button on toolbar is checked. Let the pendulum hang straight up and
down at rest, and then press the Zero button. The probe should now read 0 radians.
Note that the sensor will still need frequent re-zeroing throughout the experiment.

4. Use the Experiment ->Data Collection menu to set the experiment Duration to
10 seconds and the Sampling Rate to 50 points per second.

5. Gently swing the pendulum back and forth and press Collect. When it is done
collecting data, you should have a roughly sinusoidal curve. It will probably be
convenient to re-adjust the scaling. One way to do that is to use the Autoscale icon
on the tool bar (located just to the left of the zoom icons).

Note that the curve will be vertically shifted away from 0 due to the zeroing problem
of the sensor. That’s ok. You will adjust for this in your curve-fits below.

6. Save your work so far.

Experiments

Now that everything is working, it’s time to take some data and analyze it.
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1. Rezero the rotary sensor. Rotate the pendulum until the initial angle is approximately
1.0 radians. Release the pendulum from rest and press the Collect button at the
same time. Note that there is a considerable time delay between when you press
Collect and when the computer actually starts collecting data.

2. Try to fit your data to a function like Eq. 8.1. Click on the “Angle” graph so it is the
active graph. Select Analyze ->Curve Fit, and then select the Cosine function:

A*cos(Bt+C)+D

Comparing this to Eq. 8.1, A is the amplitude, B is the angular frequency ω, C is the
phase angle ϕ, and D is the offset needed because the sensor tends to lose track of
exactly where zero should be. Press Try Fit.

If necessary, manually adjust the various coefficients to improve the fit. For example,
you can add or subtract multiples of 2π to reduce ϕ to a value in the range [0 : 2π].
(You can use the tiny arrow next to the ϕ box to set the increment to 6.2832 so that
you can add or subtract multiples of 2π with a single click.)

You should also make sure that A and B (i.e. A and ω) are positive. (You can do this
all manually, or you can manually adjust the coefficients, and then select Automatic
again and have LoggerPro try again.) If LoggerPro has trouble fitting your data,
you may just do a manual fit. When you are satisfied, press Ok, save your work, and
print out your graph.

3. Use the calculated angular frequency to determine the period of the pendulum. Does
the value seem reasonable? What is the uncertainty in that period? Also, does the
value for the amplitude seem reasonable? If you started with about 1.0 radians, then
the amplitude should be in that range as well. Don’t worry about the phase just yet.
You should also have observed that the amplitude of each swing slowly decreases
with time. This is due to damping; you’ll look at that more carefully below.

4. In order to make sense of the phase, we have to deal with the time delay between when
you press the Collect button and when LoggerPro actually starts to record data.
Select Experiment -> Data Collection and select the tab for Triggering. Check
the box for On Keyboard. Now, when you press the Collect button, LoggerPro will
not start recording data until you press a key on the keyboard.

5. Start the pendulum swinging again. Press Collect and then try to press a key on
the keyboard at the appropriate time in the swing such that the phase ϕ will be close
to zero. (That is, the pendulum will be at its maximum.)

If all went well, LoggerPro should report a phase close to zero. (Values within ±0.5
of 0 are fine.) If it doesn’t, make sure that LoggerPro has selected a positive value
for A and ω, and that ϕ has been reduced to the range [0 : 2π]. Make any manual
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adjustments necessary. Don’t be a perfectionist, but don’t be afraid to do a few
trials. After all, each one takes much less than a minute.

Print out your graph and describe in words what the pendulum was doing at the
start of your graph.

6. Next, try to get a graph such that ϕ is approximately π/2. Again, print out your
graph and describe in words what the pendulum was doing at the start of your graph.

Cleaning Up

From now on, we won’t care about the phase, so go back and uncheck the triggering box.
Also, from now on, we won’t care about the sign of the amplitude or frequency.

8.3.2 Simple Harmonic Motion?

Is the pendulum a simple harmonic oscillator? One of the hallmarks of simple harmonic
motion is that the period is independent of the amplitude. Is that the case for your
pendulum?

Try it and see. Determine the period as a function of amplitude. Try different amplitudes
covering as wide a range as is practical. In order to minimize the effects of damping, you
may wish to press the Stop button after only a few oscillations have completed, rather
than waiting for the full 10 seconds.

The format of this section is up to you. Your goal is to answer the question “Is the
pendulum a simple harmonic oscillator?” using whatever data you choose to acquire. Use
whatever charts, tables, or graphs you deem appropriate. Describe your findings clearly.
Take the time to do this part well.

8.3.3 Damping

As noted above, the amplitude of each swing slowly decreases with time. For the simplest
sort of damping, and for small amplitudes, a reasonable approximation of the motion is
given by

θ(t) = A0 +Ae−t/τ sin(ωt+ ϕ) , (8.3)

where τ is the characteristic damping time. The offset A0 has to be included to account
for the zeroing problems of the rotary sensor.

1. Try it. Change the experiment time to 30 s. Set the pendulum swinging with a
moderate amplitude (about 1.0 radians) and press Collect.
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2. Try fitting this data to the damped function in Eq. 8.3. In the Curve Fit menu,
select the Damped Harmonic function. For this experiment, the signs of A and ω do
not matter, and you may ignore the phase ϕ.

3. Once your are satisfied, print out your results. In a rough sense, τ is the time it
takes for the oscillation to decay “significantly.” For example, after ln(2) τ seconds,
the oscillation amplitude will be half of the original value, and after about 5τ , it will
be less than 1% of the original value. Does your value for τ look reasonable?

As always, discuss sources of error and ways in which the experiment or write-up could be
improved.
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