

Problem 4: (20 pts.) A block of mass $m_1 = 8.00 \,\mathrm{kg}$ is on a horizontal table. The coefficient of kinetic friction μ_k between m_1 and the table is unknown. The block is attached to a string that passes over a pulley and is attached to a hanging mass $m_2 = 6.00 \,\mathrm{kg}$. The pulley is frictionless, and both the pulley and string are massless. Initially, both blocks are moving with a speed of $0.900 \,\mathrm{m/s}$. (m_1 is moving to the right, and m_2 is moving downward.) The blocks come to rest after moving $2.00 \,\mathrm{m}$. What is μ_k ?

Problem 4: (20 pts.) A block of mass $m_1 = 8.00 \,\mathrm{kg}$ is on a horizontal table. The coefficient of kinetic friction μ_k between m_1 and the table is unknown. The block is attached to a string that passes over a pulley and is attached to a hanging mass $m_2 = 6.00 \,\mathrm{kg}$. The pulley is frictionless, and both the pulley and string are massless. Initially, both blocks are moving with a speed of $0.900 \,\mathrm{m/s}$. (m_1 is moving to the right, and m_2 is moving downward.) The blocks come to rest after moving $2.00 \,\mathrm{m}$. What is μ_k ?

To solve with $2\vec{F} = m\vec{a}$ 1st find a_1 $N_{1p}^2 = N_{1s}^2 + 2a_1\Delta N$ $A_1 = \frac{N_{1p}^2 - N_{1s}^2}{2\Delta N}$ $A_1 = \frac{0 - (0.960 \text{ m/s})^2}{2(2.00 \text{ m})}$ $A_1 = \frac{0 - (0.960 \text{ m/s})^2}{2(2.00 \text{ m})}$

Block 1: $2F_{ix}=m_i a_{ix}$ $2F_{iy}=m_i a_{iy}$ $T-f_k=m_i a_i$ $F_N-m_i g=0$ $T-\mu_k f_N=m_i a_i$ $F_N=m_i g$ $T-\mu_k m_i g=m_i a_i$ plug in

Block 2: call dem positive so $a_1 = a_2$ $m_2g - F = m_2a_a$ $T = m_2g - m_a a_1$ use $T = m_2g - m_a a_1$

 $m_2 g - m_2 a_1 - u_k m_1 g = m_1 a_1$ $\frac{m_2 (g - a_1) - m_1 a_1}{m_1 g} = u_k$ $\frac{(6 hy) (9.8 + 0.2025) - (8 hy) (-0.2025 mb^2)}{(8 ky) (4.8 mb^2)} = u_k$

0.786 = MK