
Physics 151
Chapter 7 Notes—Part 1
Conservation of Energy

7 Potential Energy and Energy Conservation
We now have seen two different ways to approach a problem with constant forces and acceleration: ∑

F⃗ = ma⃗
and Ki + W = Kf . For constant force and acceleration, they are equivalent:

Ki + W = Kf

1
2mv2

i +
∑

F · ∆x = 1
2mv2

f

1
2mv2

i + (ma) · ∆x = 1
2mv2

f

1
2v2

i + a · ∆x = 1
2v2

f

v2
i + 2a · ∆x = v2

f

where the last line is familiar from our study of motion with constant acceleration.

But what if the forces (and hence acceleration) are not constant? While ∑
F⃗ = ma⃗ is still valid, it is less

useful if we can’t assume motion with constant acceleration.

Even if the acceleration is not constant, it is still true that
Ki + W = Kf

Further, for some forces, W can be determined just by knowing the initial and final positions, without having
to calculate all the details in between. These forces are known as conservative forces, and are characterized
by a potential, or stored energy.

7.1 Gravitational Potential Energy
Recall the example of lifting a a book of mass m = 2.00 kg up a height h = 1.50 m at constant speed. In
doing so, you have to do W = mgh = 29.4 J of work, and gravity does −29.4 J of work. You can get that
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energy back. Suppose you drop the book and let it fall down 1.50 m. The book will accelerate in freefall.
Just before it hits the table, it has velocity v =

√
2gh = 5.42 m/s and kinetic energy K = 1

2mv2 = 29.4 J.
During the fall, gravity does positive work W = mgh = 29.4 J on the book.

We can put these ideas together to define a “Potential Energy” U for the gravitational force by

−(Uf − Ui) ≡ W

Rearranging the work-kinetic energy theorem gives another way to look at this.

Ki + W = Kf

Ki − (Uf − Ui) = Kf

Ki + Ui = Kf + Uf

Ei = Ef

On the last line, we have written E for the total mechanical energy.

Note: Only the change in potential energy matters. We can choose the origin to be any convenient height—
the floor, the table-top, the ceiling—as long as we are consistent and use the same origin for calculating the
initial and final heights. The gravitational potential energy is thus:

Ug = mgy

This tells us how much energy is stored in a system by raising an object to a height y.

7.2 Elastic (Spring) Potential Energy
Stretching or compressing a spring takes work and can store energy. Recall Hooke’s law for a spring:

Fs = −k(x − x0)
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where k is the spring constant, and x0 is the relaxed position of the spring. We will usually try to set up our
coordinate system so that x0 = 0. Imagine stretching the spring from xi to xf (and assume for simplicity
that x0 = 0.) The work done is not simply F · ∆x since the force F is not constant, but we can still calculate
the work done by doing an integral. The change in potential energy is

−(Uf − Ui) = W

Uf − Ui = −W = −
∫ xf

xi
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Thus we will define Elastic Potential Energy by

Us = 1
2k(x − x0)2

Again, we will never have to do that integral—all we need to know are the initial and final positions of the
spring.

7.3 Conservative and Non-conservative Forces
Caveat: The formulation in terms of potential energy only works if the work W depends only on the initial
and final positions, and not on the path taken between them. For gravity and springs, this is true; for other
forces, such as friction, it is not.
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7.3.1 Conservative Forces

A force is called conservative if the work done depends only on the initial and final positions, and not on
the path taken between them. Examples include gravity and springs. The work done in such a situation
is reversible—worked stored as kinetic energy can be retrieved later on. To calculate work for conservative
forces, you don’t need to worry about the details of the path, you just need to know the initial and final
positions.

7.3.2 Nonconservative Forces

A force is called nonconservative if the work done does depend on the path taken. Friction is a good example.
If you slide a book across a table, the work done by friction is different if you take a straight path vs. a
meandering path. To calculate work for nonconservative forces, you do need to worry about the details of
the path.

Friction

The work done by friction depends on the path taken. There is no corresponding potential, or U value.

Thermal Energy What happens to the work done by friction? It increases the thermal energy of the
system.

∆Eth = fk∆x

Thus if friction is the only force acting on a system, you could write either of the following:

Ki + Wfr = Kf

Ki − fk∆x = Kf

or

Ki = Kf + ∆Eth

The first version will usually be more useful to us, until we get to the chapters on thermodynamics where we
will be explicitly interested in tracking the thermal energy.
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Other Forces

Other forces may also be involved, such as muscles or the crumpling of a fender during a car crash. We can’t
assume those are conservative unless we are explicitly given a U function for them.

7.4 Conservation of Energy
Starting with the general work-kinetic energy theorem:

Ki + Wtotal = Kf

we can break up the work into several different types. We will include work that is associated with a potential
energy by including that potential. Work associated with friction can be included either as a loss in initial
energy −fk∆x or as a increase in the final thermal energy ∆Eth. Other work (muscles, car fenders, etc.) we
will simply include as Wother.

Ki + Wtotal = Kf

Ki + Ugi + Usi − fk∆x + Wother = Kf + Ugf + Usf

Ki + Ugi + Usi − fk∆x + Wother = Kf + Ugf + Usf

Ki + Ui − fk∆x + Wother = Kf + Uf

where on the last line we have grouped all the possible potential energies into a single U . This is a general
form for the conservation of energy. In any particular problem, many of these terms may actually be zero.

Solving Energy Conservation Problems
Energy conservation problems typically involve comparing an initial state and a final state. The basic approach
is rather methodical in nature:

1. Draw a good diagram labeling everything for both the initial and final states. With this diagram in
hand, it will usually be easier to identify all the terms in the energy conservation equation and put the
appropriate variables in.
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2. Start with the general energy conservation equation:

Ki + Ui − fk∆x + Wother = Kf + Uf

3. Consider the nonconservative terms fk∆x and Wother. Often, they will be zero. If not, you may have
to do a Newton’s Law problem to write those terms in terms of basic quantities given in the problem.

4. Write out in detail what each term means, while keeping the overal equation intact. That is, insert the
formula for kinetic energy for each mass in the problem. Expand out the potential energy as appropriate
to include gravity, springs, and any other potentials in the problem. Keep everything symbolic at first.
Often, terms will cancel. Do this for both the initial state and final state.

5. Rearrange terms to isolate the unknown and solve.

6. Check your results for plausibility.

What’s Next?
• Examples! Read the examples in the text, and see the examples posted on the course website.

• Force and Potential Energy (not on next test)

• Energy Diagrams (not on next test)
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