
Physics 151
Chapter 13 Notes

Gravitational Orbits

13 Gravitation

13.1 Newton’s Law of Gravitation

An object in a circular orbit is really in a state of continually falling, or “Freefall.”

In some sense, gravity is nature’s weakest force, but since it is always attractive, it’s often
the one we most notice.

The text just asserts the law and then proceeds, but we can also infer it from data on
planetary orbits on the inside back cover of the textbook. Mathematica also has a lot of
the relevant data built in.

Consider a planet in a circular orbit of radius R around the Sun. The planet takes a time
T (known as the period) to complete one orbit. The orbital velocity v = 2πR/T . We can
explore how these quantities are related.
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Planetary Orbits
Mathematica has some basic planetary data built in.  We can use it to re-discover Kepler’s third law, 
and, from that, infer the form of Newton’s law of Universal Gravitation.  Since the orbits are not quite 

circular, the appropriate quantity to use is the semi-major axis (i.e. half of the major axis of the orbital 
ellipse.)

In[26]:= Clear["Global`*"];

In[27]:= planets =

{"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"};

In[28]:= data = Table[{PlanetData[p, "MajorAxis"] /2.0,
PlanetData[p, "OrbitPeriod"]}, {p, planets}];

Pluto is technically classified as a “Dwarf Planet”, so we have to add it in separately.

In[29]:= AppendTo[planets, "Pluto"];
AppendTo[data, {MinorPlanetData["Pluto", "MajorAxis"] / 2.0,

MinorPlanetData["Pluto", "OrbitPeriod"]}];

In[30]:= TableForm[data,
TableHeadings  {planets, {"Orbital Radius", "Orbital Period"}}]

Out[30]//TableForm=

Orbital Radius Orbital Period

Mercury 0.387099 au 87.96926 days

Venus 0.723332 au 224.70080 days

Earth 1. au 365.25636 days

Mars 1.52366 au 1.8808476 a

Jupiter 5.20336 au 11.862615 a

Saturn 9.53707 au 29.447498 a

Uranus 19.1913 au 84.016846 a

Neptune 30.069 au 164.79132 a

Pluto 39.5886 au 249. a

For plotting and computation, we should switch all data to uniform units of meters and seconds.



In[31]:= data = UnitConvert[data, "SIBase"];
TableForm[data,
TableHeadings  {planets, {"Orbital Radius", "Orbital Period"}}]

Out[32]//TableForm=

Orbital Radius Orbital Period

Mercury 5.79092×1010 m 7.600544× 106 s

Venus 1.08209×1011 m 1.9414149 ×107 s

Earth 1.49598×1011 m 3.1558149 ×107 s

Mars 2.27937×1011 m 5.9355036 ×107 s

Jupiter 7.78412×1011 m 3.7435566 ×108 s

Saturn 1.42673×1012 m 9.2929236 ×108 s

Uranus 2.87097×1012 m 2.6513700 ×109 s

Neptune 4.49825×1012 m 5.2004186 ×109 s

Pluto 5.92237×1012 m 7.86× 109 s

Animation (inner planets only)

For animation, it is convenient to scale all lengths by Earth’s orbital radius, and all times by Earth’s 

orbital period (1 year):

In[33]:= comp =

Table[{data〚i, 1〛 / data〚3, 1〛, data〚i, 2〛 /data〚3, 2〛}, {i, 1, Length[data]}];

In[34]:= x[r_, T_, t_] := r Cos[2 π t/T]
y[r_, T_, t_] := r Sin[2 π t/T]
pos[r_, T_, t_] := {x[r, T, t], y[r, T, t]}
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In[37]:= planets = {1, 2, 3, 4}; (* Just show the 4 inner planets *)

Animate[Show[{
Graphics[{Yellow, Disk[{0, 0}, 0.1]}] (* Sun *),
ParametricPlot[
Table[pos[comp〚i, 1〛, 1, ϕ], {i, planets}], {ϕ, 0, 1}, PlotRange  All],

ListPlot[Table[{pos[comp〚i, 1〛, comp〚i, 2〛, t]}, {i, planets}],
PlotStyle  {{Brown, PointSize[0.04]}, {Gray, PointSize[0.05]},

{Blue, PointSize[0.06]}, {Red, PointSize[0.04]}
(*, {Brown, PointSize[0.10]}, {Yellow, PointSize[0.08]} *)}]

}

], {t, 0, 5, 0.01, DefaultDuration  60, AnimationRunning  False}]
Out[38]=

t

In[39]:= opts = {AspectRatio  1/2, LabelStyle  Larger, Frame  True,
FrameLabel  {"Mean Radius (m)", "Orbital Period (s)"},
ImageSize  Scaled[0.75]}; (* Common plot options *)
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In[40]:= ListPlot[data, opts]
Out[40]=
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This plot is not terribly useful for visualization, since all of the inner planets are squished down in the 

lower left corner, and it doesn’t follow any obvious curve.

Power-Laws and Log-Log Plots

The T vs. R  plot is not terribly useful for visualization, since all of the inner planets are squished down 

in the lower left corner.  Using a Log-Log plot spreads things out  nicely.  

In[41]:= ListLogLogPlot[data, opts]
Out[41]=
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This plot shows a suggestive linear trend.  Try fitting it to find the slope:
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In[42]:= logdata = Log[10, QuantityMagnitude[data]]
Out[42]=

{{10.7627, 6.8808447}, {11.0343, 7.28811836}, {11.1749, 7.49911152},
{11.3578, 7.77345757}, {11.8912, 8.57328440}, {12.1543, 8.96815237},
{12.458, 9.42347034}, {12.653, 9.71603830}, {12.7725, 9.895}}

In[43]:= llfit[x_] = Fit[logdata, {1, x}, x]
Out[43]=

-9.26216 + 1.4999 x

The slope is very nearly 1.5.

In[44]:= Show[{ListPlot[logdata], Plot[llfit[x], {x, logdata〚1, 1〛, logdata〚-1, 1〛},
PlotStyle  Red, PlotLegends  "Slope=1.49983"]}, LabelStyle  Larger,

Frame  True, FrameLabel  {"Log(Mean Radius)", "Log(Orbital Period)"},
ImageSize  Scaled[0.75], AspectRatio  1 /2

]

Out[44]=
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Slope=1.49983

Log-Log Plots and Power Laws

Suppose the period T is related to the orbital radius R by a power law   T = c Rm.  How would that show 

up in a plot?  Try taking logs of both sides:
T = c Rm

log(T) = log(c) + log(Rm) = log(c) + m log(R)
This suggests that if you plot log(T) vs. log(R), you will get a straight line with slope ‘m’.  In this case, we 

have m = 1.5.  This means
T = c R1.5 = c R3/2

squaring both sides gives
T2 = c R3

which is Kepler’s 3rd law.
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Kepler’s Third Law

The Log-Log analysis suggests that another way to plot it is to plot T2 vs. R3.  It shows a linear trend, so 

we can fit it with a straight line.  We will see that the slope is given by 
4π2

G Msun

In[45]:= data32 = TableQuantityMagnitude[data〚i, 1〛]3,

QuantityMagnitude[data〚i, 2〛]2, {i, 1, Length[data]};

In[46]:= fit = LinearModelFit[data32, { x}, x, IncludeConstantBasis  False ];

In[47]:= Show{ListPlot[data32],

Plot[fit[x], {x, data32〚1, 1〛, data32〚-1, 1〛}, PlotStyle  Red]},
LabelStyle  Larger, Frame  True,

FrameLabel  "(Mean Radius (m))3", "(Orbital Period (s))2",

ImageSize  Scaled[0.75], AspectRatio  1 /2



Out[47]=
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In[48]:= slope = fit'[x]
Out[48]=

2.97414 ×10-19

In[49]:= G = Quantity[1, "GravitationalConstant"];
Msun = Quantity[1, "SolarMass"];

UnitConvert4 π
2
 (G * Msun), "SIBase"

Out[51]=

2.975× 10-19 s2/m3
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It is useful to express the equation relating T 2 and R3 in the following way:

GMsunT 2 = 4π2R3 (1)

where Msun = 1.989 × 1030 kg is the mass of the sun, and G = 6.67 × 10−11 Nm2/kg2 is
Newton’s gravitational constant. This is also known as Kepler’s Third Law. (More on that
later).

From this, we can deduce the form of the gravitational force.

Newton’s Law of Universal Gravitation

Consider again a planet moving at a speed v in a circular orbit of radius R. The period T

is related to the speed v by v = 2πR

T
.

Sun Planet

v⃗
R

F = ma

F = m
v2

R
= m

R

(2πR

T

)2

F = m
4π2R

T 2

Now combine that with the experimentally-determined Kepler’s Third Law:

GMsunT 2 = 4π2R3

T 2 = 4π2R3/GMsun

Plug that expression for T in to the force equation:

F = m
4π2R

4π2R3/GMsun
(2)

F = GMsunm

R2 (3)

This is Newton’s law of gravitation.
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Vector Formulation

The gravitational force is a vector. It has magnitude and direction. The magnitude is
given by Eq. 3. The direction is attractive. It is useful to develop a simple notation to
indicate the direction of the force.

Consider two masses, M1 and M2. Assume that mass M1 is at the origin, and mass M2 is
located at r⃗, a distance r away.

M1

M2

r⃗

r̂

The force on M2 is attractive and points back towards M1. We can describe that in terms
of a unit vector which we call r̂. Specifically, define the unit vector (pronounced as “r hat”)
by

r̂ ≡ r⃗

|r⃗|
= r⃗

r

This vector is dimensionless, and has a magnitude of 1. It’s sole purpose is to point in the
r⃗ direction. (We will never actually calculate an r̂ in this course. It’s sole purpose is to
point in a direction, and we will simply draw the gravitational force vector on a free body
diagram pointing in the correct direction and use that diagram to calculate any components
neeeded.)

We can now write Newton’s Law of Universal Gravitation in vector form by multiplying
the magnitude by (−r̂) to indicate that it points towards the other mass.

M1

M2

r⃗

F⃗ r̂

F⃗ = −GM1M2
r2 r̂

Key ideas

1. The force is always attractive between masses.

2. The force is proportional to 1/r2, and tends to zero as r → ∞.

3. The gravitational force is a vector. It obeys the law of superposition. If there are two
masses, m1, and m2 pulling on mass m0, the total force on m0 is the vector sum of
the two forces:
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m0

m1

m2
F⃗01

F⃗02

⃗Ftotal

4. One of Newton’s key insights: This law is universal. Any two masses are attracted
by this law. It applies to small objects on Earth as well as large objects (planets,
stars, and galaxies) in space.

13.2 Weight

Force exerted on a 1 kg mass on the surface of Earth

Consider a 1.00 kg mass on the surface of the Earth. What is the magnitude of the gravi-
tational force exerted by the Earth on that mass?

ME

mRE

F = GMEarthm

R2
Earth

= m × GMEarth
R2

Earth
G = 6.67 × 10−11 Nm2/kg2

MEarth = 5.972 × 1024 kg
m = 1.00 kg

REarth = 6.367 × 106 m (Note : not exactly spherical)
F = 9.83 N = (1.00 kg) × (9.83 m/s2)

This is where we get our value for g in F = mg = m×9.8 m/s2. (The Earth is rotating, and
also not exactly spherical. These complicate the situation somewhat, but we will ignore
those complications.)

Important Note: Outside a spherically symmetric object, gravity acts as if all the mass
were concentrated at the center.
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13.3 The Motion of Satellites

We can use Newton’s laws to explore the orbits of satellites. Consider the International
Space Station (ISS). It orbits the Earth in a roughly circular orbit at a height h = 400 km =
4.00 × 105 m above the surface of the earth. What is the period of its orbit?

ME
m

v⃗
R E

h

Data:

h = 4.00 × 105 m
RE = 6.371 × 106 m

r = RE + h = 6.771 × 106 m
ME = 5.972 × 1024 kg

The space station travels in a circular orbit a distance r = RE + h away from the center of
the Earth. Apply Newton’s Second law to find the speed, and then the orbital period.:∑

F = ma∑
F = m

v2

r
GMem

r2 = m
v2

r
GMe

r
= v2

v =

√
GMe

r

v =

√
(6.67 × 10−11 Nm2/kg2) × (5.972 × 1024 kg)

6.771 × 106 m
v = 7672 m/s

T = 2πr

v
= 2π × (6.771 × 106 m)

7672 m/s
T = 5545 s ≈ 92 minutes

What is the free-fall acceleration-, or the effective “g,” at that height?
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F = ma

a = F

m

a =
GMEm

r2

m

a = GME

r2

a = (6.67 × 10−11 Nm2/kg2) × (5.972 × 1024 kg)
(6.771 × 106 m)2

a = 8.69 m/s2

This is only slightly less than on Earth’s surface. Why do the astronauts feel weightless?
They are continually falling!

Recap

We have two main ideas in this section: The first is Newton’s second law:∑
F⃗ = ma⃗

The second is the Newton’s law of universal gravitation: Any two masses M1 and M2,
separated by a distance r are attracted by a force given by

F⃗ = −GM1M2
r2 r̂

This force law allows us to use
∑

F⃗ = ma⃗ in a richer variety of applications.

What’s Next?
Energy

Orbits

Examples!
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