Problem 4: (20 pts.) A 120-kg block is subject to 2 forces. The first force has a magnitude of 20.0 N, and is directed at an angle of 30.0° . (All angles are measured in the usual convention of degrees counterclockwise from the positive x-axis.) The acceleration of the object is found to be $0.2887 \,\mathrm{m/s^2}$ at an angle of 120° . What is the magnitude and direction of the second force?

Problem 4: (20 pts.) A 120-kg block is subject to 2 forces. The first force has a magnitude of 20.0 N, and is directed at an angle of 30.0°. (All angles are measured in the usual convention of degrees counterclockwise from the positive x-axis.) The acceleration of the object is found to be $0.2887 \,\mathrm{m/s^2}$ at an angle of 120° . What is the magnitude and direction of the second force?

$$\overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{ma}$$

$$\overrightarrow{F_2} = \overrightarrow{ma} - \overrightarrow{F_1}$$

N-corporant: $F_{2N} = ma_{N} - F_{1N}$ = (120)(0.2887) cn 120° - 20 co 30°= -34.64 N

$$y$$
-components: $F_{2y} = ma_y - F_{iy}$
= $(120)(6.2887) ain $120^\circ - 20 ain 30^\circ$
 $F_{2y} = 20 N$$