

**Problem 2:** (30 pts.) Consider the circuit below, known as a Wheatstone Bridge.



a. (15 pts.) If the voltage difference  $V_{ab}$  is measured to be 0 V, what is the unknown resistance  $R_X$ ?

b. (15 pts.) Next, resistor  $R_X$  is replaced by a new unknown resistor  $R_Y$ . The voltage  $V_{ab} = V_a - V_b$  is now measured to be 2.00 V. What is  $R_Y$ ? (In this type of circuit, measurements of  $V_{ab}$  can be used to monitor changes in resistance of  $R_Y$ .)

Problem 2: (30 pts.) Consider the circuit below, known as a Wheatstone Bridge.



a. (15 pts.) If the voltage difference  $V_{ab}$  is measured to be 0 V, what is the unknown resistance  $R_X$ ?  $I_L = \frac{34V}{3k+4k} = \frac{1}{3}$ 

V= I\_R= 8V. V= voltage across resists 1 = I\_R= 16V : Requir V= 8V , Va = 16V, so IR= 6kr. Lastly, Requir V= 8V = IRRx >> Rx = 8V = 3kr.

b. (15 pts.) Next, resistor  $R_X$  is replaced by a new unknown resistor  $R_Y$ . The voltage  $V_{ab} = V_a - V_b$  is now measured to be 2.00 V. What is  $R_Y$ ? (In this type of circuit, measurements of  $V_{ab}$  can be used to monitor changes in resistance of  $R_Y$ .)

Now, requir  $V_b = 6V$ , so  $I_R = \frac{24-6}{6hR} = 3MA$ Then, since  $V_b = 6V = I_R Ry$ ,  $R_Y = \frac{6V}{3mA} = \frac{1}{3mA}$