$$V(t) = V_0 + V_1 \frac{t}{\tau} \quad ,$$

where $V_0 = 30$ Volts, $V_1 = 1000$ Volts, and $\tau = 2$ s.

- a. (30 pts.) At a time of t = 5 s, what is the magnetic field strength inside the capacitor at a distance of 0.030 m from the central axis?
- b. (10 pts.) At that same time of t = 5 s, what is the magnetic field strength outside the capacitor at a distance of 0.080 m from the central axis?

Problem 6: (40 pts.) A parallel plate capacitor is made from two circular plates of radius 0.050 m separated by 0.001 m. The voltage across the plates is given as a function of time by

$$V(t) = V_0 + V_1 \frac{t}{\tau} \quad ,$$

where $V_0 = 30$ Volts, $V_1 = 1000$ Volts, and $\tau = 2$ s.

- a. (30 pts.) At a time of t = 5 s, what is the magnetic field strength inside the capacitor at a distance of 0.030 m from the central axis?
- b. (10 pts.) At that same time of t = 5 s, what is the magnetic field strength outside the capacitor at a distance of 0.080 m from the central axis?

(a)

$$T = \frac{1}{1 + \frac$$

Problem 6: (40 pts.) A parallel plate capacitor is made from two circular plates of radius 0.050 m separated by 0.001 m. The voltage across the plates is given as a function of time by

$$V(t) = V_0 + V_1 \frac{t}{\tau} \quad ,$$

where $V_0 = 30$ Volts, $V_1 = 1000$ Volts, and $\tau = 2$ s.

- a. (30 pts.) At a time of t = 5 s, what is the magnetic field strength inside the capacitor at a distance of 0.030 m from the central axis?
- b. (10 pts.) At that same time of t = 5 s, what is the magnetic field strength outside the capacitor at a distance of 0.080 m from the central axis?

(b) For a larger distance, $\Lambda_{b} = 0.08 \text{ m}$, the flux is confined to the area between the plates where $E \neq 0$, so $\overline{\Psi}_{E} = (\Delta V) \pi R^{2}$, where R = 0.05 m. The line integral $\overline{9}\overline{B} \cdot d\overline{1}$ is still $B \approx \pi \Lambda_{B}$, where Λ_{b} is where γ or want to measure the field. $\overline{9}\overline{B} \cdot d\overline{1} = M_{0} \left[I + \epsilon_{0} \frac{d \overline{0}\epsilon}{dt} \right]$ gives $2\pi \Lambda_{b} B = M_{0} \epsilon_{0} \pi R^{2} \frac{V_{c}}{2}$ $B = \frac{M_{0} \epsilon_{0} R^{2}}{2 \Lambda_{b} d} \frac{V_{c}}{2} = \frac{1.74 \times 10^{-15} T}{1.74 \times 10^{-15} T}$