
Fitting Data with Mathematica 

In a number  of experiments  this  semester,  you  will  be  asked  to fit  experimental  data  to a theoretical  

curve.   This  notebook  walks  through  an example  of doing  that  in Mathematica.

For  this  notebook,  we  will  look  at fitting  a simple  oscillating  function  to some  data.

Entering Data

There  are  several  ways  to enter  data  in Mathematica.  If you  only  have  a small  number  of data  points,  

you  can  just  enter  them  directly.   You  can  use  the  Palettes  -> Classroom  Assistant  -> Typesetting  -> 

Matrix  entry,  or  you  can  just  enter  in the  data  by hand.

Entering  by hand

If you  enter  it by  hand,  note  that  each  data  point  is a list,  or  pair:   { t, x } .  As  always  in Mathematica, lists  

are  enclosed  in curly  braces.   The  complete  data  set  is just  a list  of those  data  pairs:   {  { t1,  x1 }, { t2,  x2 } 

}, etc.   See  below  for  an example  data  set.   You  can  also  enter  data  tables  with  the  Matrix  tool  from  the  

Classroom  pallette.

Importing  from a file

First,  tell  Mathematica where  the  data  can  be found.   You  will  have  to change  this  for  your  own  set-up.  

In[19]:= SetDirectory ["E:/218/2011 /lab-svn/labs /torsional "]

SetDirectory : Cannot set current directory to E:/218 /2011 /lab -svn /labs /torsional .

Out[19]= $Failed

If your  Mathematica notebook  and  your  data  file  are  in the  same  directory,  this  next  trick  sometimes  

works.   However,  you  have  to save  the  notebook  first  (even  if it’s  just  an empty  notebook).

In[20]:= SetDirectory [NotebookDirectory []]

Out[20]= /home /doughera /notes /Physics -Labs-git/intermediate /Phys218 /labs

Importing  from  a plain  text  file.

If your  data  is a simple  text  file  with  two  columns  of numbers,  you  may  import  it as a "Table".



In[21]:= data = Import ["curvefit -data.txt", "Table"]

Out[21]= {{0., -1.438 }, {0.1, -1.321 }, {0.2, -0.891 }, {0.3, -0.271 }, {0.4, 0.403 }, {0.5, 0.989 },

{0.6, 1.355 }, {0.7, 1.433 }, {0.8, 1.165 }, {0.9, 0.652 }, {1., -0.007 }, {1.1, -0.662 },

{1.2, -1.175 }, {1.3, -1.433 }, {1.4, -1.35 }, {1.5, -0.965 }, {1.6, -0.359 }, {1.7, 0.31 },

{1.8, 0.921 }, {1.9, 1.321 }, {2., 1.429 }, {2.1, 1.223 }, {2.2, 0.725 }, {2.3, 0.09 },

{2.4, -0.569 }, {2.5, -1.116 }, {2.6, -1.404 }, {2.7, -1.375 }, {2.8, -1.023 }, {2.9, -0.442 }}

Importing  from  a CSV file.

If you  have  used  LoggerPro  and  exported  the  data  to a CSV  file  (Comma-separated-values)  then  Mathe-

matica can  easily  import  the  data.

In[22]:= data = Import ["curvefit -data.csv"]

Out[22]= {{Time, Potential }, {0., -1.438 }, {0.1, -1.321 }, {0.2, -0.891 }, {0.3, -0.271 }, {0.4, 0.403 },

{0.5, 0.989 }, {0.6, 1.355 }, {0.7, 1.433 }, {0.8, 1.165 }, {0.9, 0.652 }, {1., -0.007 },

{1.1, -0.662 }, {1.2, -1.175 }, {1.3, -1.433 }, {1.4, -1.35 }, {1.5, -0.965 }, {1.6, -0.359 },

{1.7, 0.31 }, {1.8, 0.921 }, {1.9, 1.321 }, {2., 1.429 }, {2.1, 1.223 }, {2.2, 0.725 }, {2.3, 0.09 },

{2.4, -0.569 }, {2.5, -1.116 }, {2.6, -1.404 }, {2.7, -1.375 }, {2.8, -1.023 }, {2.9, -0.442 }}

LoggerPro  included  titles  for  the  two  columns  of data  ("Time"  and  "Potential",  in this  case).   You  need  

to remove  them  from  the  data  before  you  can  use  it.   There  are  many,  many  ways  to do  this  in Mathe-

matica.  In the  on-line  help,  look  for  the  tutorial  on  "Getting  Pieces  of Lists."   (Of  course  you  can  also  

simply  edit  the  original  text  file  as well.)

The  most  direct  is with  the  Drop[  ] command.   The  following  drops  the  first  element  from  the  'data'  

array  and  assigns  it back  to the  data  array.

In[23]:= data = Drop [data, 1]

Out[23]= {{0., -1.438 }, {0.1, -1.321 }, {0.2, -0.891 }, {0.3, -0.271 }, {0.4, 0.403 }, {0.5, 0.989 },

{0.6, 1.355 }, {0.7, 1.433 }, {0.8, 1.165 }, {0.9, 0.652 }, {1., -0.007 }, {1.1, -0.662 },

{1.2, -1.175 }, {1.3, -1.433 }, {1.4, -1.35 }, {1.5, -0.965 }, {1.6, -0.359 }, {1.7, 0.31 },

{1.8, 0.921 }, {1.9, 1.321 }, {2., 1.429 }, {2.1, 1.223 }, {2.2, 0.725 }, {2.3, 0.09 },

{2.4, -0.569 }, {2.5, -1.116 }, {2.6, -1.404 }, {2.7, -1.375 }, {2.8, -1.023 }, {2.9, -0.442 }}

Another  more  general  way  to select  parts  of a list  is to use  the  Select[  ] function.   This  allows  you  to 

select  elements  from  a list  that  meet  some  criterion.   See  the  tutorial  on  Finding  Expressions  that  

Match  a Pattern"  for  more  on  the  Select[  ] function.   The  syntax  is likely  unfamiliar,  but  the  following  

looks  at all  the  elements  of data,  and  selects  only  those  for  which  all  the  elements  are  numbers.  

The  Select  function  loops  through  our  data  and  assigns  the  symbol  ‘#’  to each  element  in turn.    It then  

selects  only  the  elements  for  which  our  test  is True.   Since  each  element  is a pair,  or  list  of items,  we  

need  to look  at both  of them.   The  function  VectorQ  does  that.   It applies  the  “NumberQ”  test  to each  of 

the  elements  of “#”  and  returns  True  only  if all  of  them  are  numbers.  (Be  sure  to include  the  '&'.   Look  

up the  online  help  for  Function[  ] to learn  more  about  what  it is doing.)
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In[24]:= data = Import ["curvefit -data.csv"]

data = Select [data, VectorQ [#, NumberQ ] &]

Out[24]= {{Time, Potential }, {0., -1.438 }, {0.1, -1.321 }, {0.2, -0.891 }, {0.3, -0.271 }, {0.4, 0.403 },

{0.5, 0.989 }, {0.6, 1.355 }, {0.7, 1.433 }, {0.8, 1.165 }, {0.9, 0.652 }, {1., -0.007 },

{1.1, -0.662 }, {1.2, -1.175 }, {1.3, -1.433 }, {1.4, -1.35 }, {1.5, -0.965 }, {1.6, -0.359 },

{1.7, 0.31 }, {1.8, 0.921 }, {1.9, 1.321 }, {2., 1.429 }, {2.1, 1.223 }, {2.2, 0.725 }, {2.3, 0.09 },

{2.4, -0.569 }, {2.5, -1.116 }, {2.6, -1.404 }, {2.7, -1.375 }, {2.8, -1.023 }, {2.9, -0.442 }}

Out[25]= {{0., -1.438 }, {0.1, -1.321 }, {0.2, -0.891 }, {0.3, -0.271 }, {0.4, 0.403 }, {0.5, 0.989 },

{0.6, 1.355 }, {0.7, 1.433 }, {0.8, 1.165 }, {0.9, 0.652 }, {1., -0.007 }, {1.1, -0.662 },

{1.2, -1.175 }, {1.3, -1.433 }, {1.4, -1.35 }, {1.5, -0.965 }, {1.6, -0.359 }, {1.7, 0.31 },

{1.8, 0.921 }, {1.9, 1.321 }, {2., 1.429 }, {2.1, 1.223 }, {2.2, 0.725 }, {2.3, 0.09 },

{2.4, -0.569 }, {2.5, -1.116 }, {2.6, -1.404 }, {2.7, -1.375 }, {2.8, -1.023 }, {2.9, -0.442 }}

Plotting the data

This  function  plots  the  data,  but  also  saves  a copy  of the  plot  in the  variable  'dataplot' for  later  use.   I 

find  the  default  labeling  to be  too  small;  this  command  makes  it a bit  larger.

In[26]:= dataplot = ListPlot [data, PlotRange → All,

AxesLabel → {"t", "x"}, LabelStyle → Larger, PlotStyle → Red]

Out[26]=
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Fitting a Model to the Data

For  this  exercise,  we  will  try  to fit  this  to a cosine  function,  allowing  for  the  possibility  that  the  average  

value  might  not  be  zero,  due  to some  offset  in the  sensor.

In[27]:= x[A_, ω_, ϕ_, t_, xoff_] := A Cos[ω t + ϕ] + xoff

The  basic  function  to use  is NonlinearModelFit[  ].  Consult  the  online  help  for  more  details.   This  note -

book  will  just  illustrate  the  basic  usage.
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In[28]:= fit = NonlinearModelFit [data, x[A, ω, ϕ, t, xoff ], {A, ω, ϕ, xoff}, t]

NonlinearModelFit : Failed to converge to the requested accuracy or precision within 100 iterations .

Out[28]= FittedModel  -878.989 + 879.285 Cos [0.0478572 - 0.0355321 t] 

It is also  easy  to generate  a plot  from  the  fit.   This  pair  of lines  generates  the  plot,  gives  it a name,  and  

then  combines  it with  the  data  plot.  The  Show[]  command  shows  them  both  together.  It is easy  to

make  the  graph  larger  -- the  ImageSize  -> Scaled[0.50]  makes  the  image  equal  to 1/2  the  screen  width.   

Adjust  as you  see  fit.

In[29]:= fitplot = Plot [fit[t], {t, 0, 3}, PlotRange → All];

Show [{dataplot , fitplot }, ImageSize → Scaled [0.50 ]]

Out[30]=
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This  fit  is quite  poor.   Mathematica performs  the  fit  by  starting  with  an initial  guess,  and  then  seeing  

how  the  fit  improves  as it changes  the  guess.   (LoggerPro  works  in a similar  way.)   You  can  give  it a hand  

by suggesting  a better  initial  guess  for  any  or all  of  the  parameters.   For  example,  looking  at the  graph,  

it is clear  that  the  period  is a little  over  1.0  seconds.   Specifying  an initial  guess  for   ω of  2π/1.0 is likely  

to be closer  to the  desired  result.

In[31]:= fit = NonlinearModelFit [data, x[A, ω, ϕ, t, xoff ], {A, { ω, 2 π / 1.0}, ϕ, xoff}, t]

Out[31]= FittedModel  0.00441981 + 1.43493 Cos [3.07873 + 4.7841 t] 
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In[32]:= fitplot = Plot [fit[t], {t, 0, 3}, PlotRange → All];

Show [{dataplot , fitplot }, ImageSize → Scaled [0.50 ]]

Out[33]=
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Fit Diagnostics

NonlinearModelFit  returns  a variety  of measures  for  how  "good"  the  fit  is.     The  online  help  has  more  

details,  but  three  particularly  useful  ones  are  shown  here.

Best  Fit Parameters

In[34]:= fit["BestFitParameters "]

Out[34]= {A → 1.43493, ω → 4.7841, ϕ → 3.07873, xoff → 0.00441981 }

Parameter  Confidence  Interval

This  item  gives  both  the  uncertainty  and  the  95%  confidence-level  interval.

In[35]:= fit["ParameterConfidenceIntervalTable "]

Out[35]=

Estimate Standard Error Confidence Interval

A 1.43493 0.00199071 {1.43084 , 1.43902 }

ω 4.7841 0.00169737 {4.78062 , 4.78759 }

ϕ 3.07873 0.00289789 {3.07277 , 3.08469 }

xoff 0.00441981 0.00144711 {0.00144523 , 0.00739438 }

Correlation  Matrix

The  "CorrelationMatrix"  tells  you  about  the  correlations  among  the  fit  parameters.   Low  values  mean  

the  parameters  are  poorly  correlated.   This  is good  -- it means  they  are  mostly  independent.   On  the  

other  hand,  high  values  mean  the  parameters  are  highly  correlated.   This  is o�en  a sign  of trouble  in 

the  proposed  fit.   For  example,  if you  are  trying  to fit  the  parameters  A and  B in the  function

f[x]  = A
x

B

then  the  fitted  parameters  for  A and  B will  be  highly  correlated.   You  could  double  A and  B, and  still  get  

the  same  answer.
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In[36]:= fit["CorrelationMatrix "] // MatrixForm

Out[36]//MatrixForm=

1. 0.0313374 -0.000416606 0.125407

0.0313374 1. -0.872054 0.16148

-0.000416606 -0.872054 1. -0.17947

0.125407 0.16148 -0.17947 1.

For  example,  the  3rd  element  on  the  first  row  (-0.000416606)  means  that  changes  in the  first  parameter  

(A)  are  quite  weakly  correlated  with  changes  in the  third  parameter  (ϕ).   The  1's  along  the  diagonals  

mean  each  parameter  is perfectly  correlated  with  itself,  as expected.    Checking  the  correlation  matrix  

is a good  way  to check  whether  your  proposed  fitting  function  really  has  the  independent  parameters  

you  thought  it did.

The  resulting  fit  object  has  many  other  “Properties”  you  can  query.   Here  is a list  of all  of  them:

In[37]:= fit["Properties "]

Out[37]= {AdjustedRSquared , AIC, AICc, ANOVATable , ANOVATableDegreesOfFreedom ,

ANOVATableEntries , ANOVATableMeanSquares , ANOVATableSumsOfSquares ,

BestFit, BestFitParameters , BIC, CorrelationMatrix , CovarianceMatrix ,

CurvatureConfidenceRegion , Data, EstimatedVariance , FitCurvatureTable ,

FitCurvatureTableEntries , FitResiduals , Function , HatDiagonal ,

MaxIntrinsicCurvature , MaxParameterEffectsCurvature , MeanPredictionBands ,

MeanPredictionConfidenceIntervals , MeanPredictionConfidenceIntervalTable ,

MeanPredictionConfidenceIntervalTableEntries , MeanPredictionErrors ,

ParameterBias , ParameterConfidenceIntervals , ParameterConfidenceIntervalTable ,

ParameterConfidenceIntervalTableEntries , ParameterConfidenceRegion ,

ParameterErrors , ParameterPValues , ParameterTable , ParameterTableEntries ,

ParameterTStatistics , PredictedResponse , Properties , Response ,

RSquared , SingleDeletionVariances , SinglePredictionBands ,

SinglePredictionConfidenceIntervals , SinglePredictionConfidenceIntervalTable ,

SinglePredictionConfidenceIntervalTableEntries ,

SinglePredictionErrors , StandardizedResiduals , StudentizedResiduals }
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