
Efficiently processing data files
In[97]:= Clear["Global`*"]; DateString[]

SetDirectory[NotebookDirectory[]];
Out[97]=

Wed 26 Feb 2025 14:14:31

Functions
Functions are a handy way to bundle up a possibly complex calculation (or series of calculations) into a

single command. They are especially well-suited for repetitive operations.

Example: Reading a LoggerPro data file.

First, take a quick look at the first few lines to see what you are up against:

In[99]:= FilePrint["TO-20250220-undamped-1.csv", 3]

"Latest: Time (s)","Latest: Potential (V)"

0,0.495300292969

0.002,0.49072265625

This is a comma-separated file, so import it like this. Look at the first few lines of the imported data to

make sure it is fine.
In[100]:=

rawdata = Import["TO-20250220-undamped-1.csv", "CSV"];

[[]] takes Part of an array. Range[3] prints out {1, 2, 3}, so we will be taking the first 3 elements of the

array. TableForm[] merely prints it out in a table format. (MatrixForm is similar.)
In[101]:=

TableForm[rawdata〚 Range[3] 〛]

Out[101]//TableForm=

Latest: Time (s) Latest: Potential (V)
0. 0.4953
0.002 0.490723

We want to select all the lines where there are 2 elements and each element is a number. Fiddle with

just the first 3 lines until we are sure we have it right.
In[102]:=

Select[rawdata〚 Range[3] 〛, Length[#]  2 && NumberQ[#〚1〛] && NumberQ[#〚2〛] &]
Out[102]=

{{0., 0.4953}, {0.002, 0.490723}}

It’s not necessary here, but it turns out there’s a compact way to do those number tests on each ele-

ment of a list: VectorQ[expression, test] gives True only if test yields True when applied to each of the

elements in expression.
In[103]:=

Select[rawdata〚 Range[3] 〛, Length[#]  2 && VectorQ[#, NumberQ] &]
Out[103]=

{{0., 0.4953}, {0.002, 0.490723}}

So we can apply that to all the raw data. Again, just as a visual check, we can look at the first few lines.
In[104]:=

data = Select[rawdata, Length[#]  2 && VectorQ[#, NumberQ] &];
TableForm[data〚Range[3]〛] (* Again, look at the first few lines. *)

Out[105]//TableForm=

0. 0.4953
0.002 0.490723
0.004 0.490723

Lastly, I’d like to convert the voltages to angles by applying my calibration factor:
In[106]:=

dθdV = 0.558; (* From my voltage calibration curve *)

In[107]:=

θvst = Table[{data〚i, 1〛, dθdV * data〚i, 2〛}, {i, 1, Length[data] }];
TableForm[θvst〚 Range[3] 〛]

Out[108]//TableForm=

0. 0.276378
0.002 0.273823
0.004 0.273823

Bundling it all up as a function: Think about what you ideally would like to do. In this case, I would like

to write something like:
 θvst = getFile[“TO-20250220-undamped-1.csv”, dθdV].
 The way I did it here, I used temporary arrays ‘rawdata’, and ‘data’, which I didn’t need afterwards. I
could get rid of them by squishing everything into one command, but I can also use a ‘Module’, which

allows you to specify such temporary variables which are discarded after the function runs.
In[109]:=

(* Read in Voltage vs. Time file from LoggerPro and convert the voltages to
angular displacement. Items listed in green are private to this function. *)

getFile[filename_, dθdV_] := Module[
{rawdata, data}, (* List of temporary variables for this function *)

rawdata = Import[filename, "CSV"];
(* Individual commands get separated by semicolons *)

data = Select[rawdata, Length[#]  2 && VectorQ[#, NumberQ] &];
(* The function returns the last line executed, so don't suppress that
with a semicolon. *)

Table[{data〚i, 1〛, dθdV * data〚i, 2〛}, {i, 1, Length[data] }]

]

2 processing-data.nb

In[110]:=

(* Test it out *)

θvst = getFile["TO-20250220-undamped-1.csv", dθdV];
ListPlot[θvst]

Out[111]=

5 10 15 20 25 30

-0.3

-0.2

-0.1

0.1

0.2

0.3

Example: Finding the undamped frequencies
In[112]:=

model[θ0_, γ_, ω_, ϕ_, θoff_, t_] := θ0 Exp[- γ t/2] Sin[ω t + ϕ] + θoff

For the torsional oscillator, we want to find the frequency for each of our 5 trials. Again, try the com-
mands one by one, and then bundle them all up in a handy function.

In[113]:=

fit = NonlinearModelFit[θvst, model[θ0, γ, ω, ϕ, θoff, t], {θ0, γ, ω, ϕ, θoff}, t]
Out[113]=

FittedModel 0.00719 + 0.311 1 Sin [1.06 -1] 

In[114]:=

fit["BestFitParameters"]
Out[114]=

{θ0  -0.310506, γ  0.00814831, ω  4.40419, ϕ  -1.05874, θoff  0.0071934}

To assign one of those to a result, such as the frequency, use the /. notation:
In[115]:=

ω /. fit["BestFitParameters"]
Out[115]=

4.40419

Bundling it up:

processing-data.nb 3

In[116]:=

getωfit[data_] := Module[
{fit, ωfit},
fit =

NonlinearModelFit[data, model[θ0, γ, ω, ϕ, θoff, t], {θ0, γ, ω, ϕ, θoff}, t];
ωfit = ω /. fit["BestFitParameters"]

]

In[117]:=

(* Test it out*)
getωfit[θvst]

Out[117]=

4.40419

You can even chain the two functions together:
In[118]:=

getωfit[getFile["TO-20250220-undamped-1.csv", dθdV]]
Out[118]=

4.40419

Operating on multiple files

Of course this is only worthwhile if you are going to do it multiple times. In this experiment, I have 5

files. Mathematica can list out the filenames easily, if you used an easy file name system. The FIle-
names[] command returns a list (in curly braces) of files matching a specification. Using the ‘*’ wild-
card, I can list out my five files:

In[119]:=

FileNames["TO-20250220-undamped-*.csv"]
Out[119]=

{TO-20250220-undamped-1.csv,
TO-20250220-undamped-2.csv, TO-20250220-undamped-3.csv,
TO-20250220-undamped-4.csv, TO-20250220-undamped-5.csv}

You can use that list to generate a Table of ω values: The {f, FileNames[]} construct
assigns the variable ‘f’ to each of the elements in the FileNames list in turn.

In[120]:=

ω0s = Table[getωfit[getFile[f, dθdV]],
{f, FileNames["TO-20250220-undamped-*.csv"]}]

Out[120]=

{4.40419, 4.40434, 4.40426, 4.40422, 4.40429}

In[121]:=

Mean[ω0s]
Out[121]=

4.40426

4 processing-data.nb

In[122]:=

δω0 = StandardDeviation[ω0s] / Sqrt[Length[ω0s]]
Out[122]=

0.0000266678

Expressing the uncertainty with Around[]
In[123]:=

ω0 = Around[Mean[ω0s], δω0]
Out[123]=

4.404258 ±0.000027

Now it is very easy to repeat all that with my damped oscillation files:
In[124]:=

ωvs = Table[getωfit[getFile[f, dθdV]], {f, FileNames["TO-20250220-damped-*.csv"]}]
Out[124]=

{4.41284, 4.41285, 4.41277, 4.41271, 4.41272}

In[125]:=

Mean[ωvs]
Out[125]=

4.41278

In[126]:=

δωv = StandardDeviation[ωvs] / Sqrt[Length[ωvs]]
Out[126]=

0.0000287787

In[127]:=

ωv = Around[Mean[ωvs], δωv]
Out[127]=

4.412777 ±0.000029

Mathematica knows how to propagate uncertainty in many straightforward calculations.
In[128]:=

ω0 - ωv
Out[128]=

-0.00852 ±0.00004

The uncertainty is the same as we get with the standard propagation formula:
In[129]:=

Sqrt[δω0^2 + δωv^2]
Out[129]=

0.000039235

processing-data.nb 5

