
Least Squares Fitting to a Straight Line
Physics 238

In Chapter 8 of An Introduction to Error Analysis, by John R. Taylor, the author discusses the general
theme of least-squares fitting. This is based on the normal distribution discussion in Chapter 5. Here,
we will take the theoretical background as given, and show how the minimization of the least square

difference leads to the standard results for fitting a straight line.

Fitting a Straight Line

Data

First, here is some sample data of {mass, angle} pairs from the torsional oscillator experiment. Masses

are listed as negative when they apply a negative torque.

Typing the data using the Classroom Assistant:

From the Palettes -> Classroom Assistant pallete, look for the matrix item:
 

 
. (Depending on the

version of Mathematica, it might be in the “Typesetting” menu, or in the “Advanced” menu. (Use Ctrl-
Enter to add a new row, and Ctrl-, to add a new column.)

In[10]:= data =

-400 1.505
-350 1.645
-300 1.800
-250 1.980
-200 2.180
-150 2.380
-100 2.600
-50 2.800
0 3.005
50 3.205
100 3.405
150 3.620
200 3.830
250 4.025
300 4.235
350 4.460
400 4.645
0 3.005

;

Typing the data directly:

You can also type in the data directly The data is a list of data points. All lists are made of elements in

curly braces { } separated by commas. Each data point is itself a list, consisting of two numbers (in

curly braces) separated by a comma. To see what it looks like, display it with TableForm (or
MatrixForm).

In[11]:= data = {

{-400, 1.505}, {-350, 1.645}, {-300, 1.800}, {-250, 1.980},
{-200, 2.180}, {-150, 2.380}, {-100, 2.600}, {-50, 2.800},
{0, 3.005},
{50, 3.205}, {100, 3.405}, {150, 3.620}, {200, 3.830},
{250, 4.025}, {300, 4.235}, {350, 4.460}, {400, 4.645},
{0, 3.005}

};

In[12]:= npts = Length[data]
Out[12]=

18

Plot the data.

Be sure to give your axes meaningful labels.

In[13]:= ListPlot[data, AxesLabel  {"Mass (g)", "Angle (radians)"}]
Out[13]=

-400 -200 200 400
Mass (g)

1

2

3

4

Angle (radians)

The default plot isn’t particularly nice, especially if you want to display it or include it in another docu-
ment. There are lots of options to tweak; the following generally work fairly well in practice. It also

shows how to assign a name to that plot, to make it easy to re-use it and layer the fit on top.

2 chisq-linear-fit.nb

In[14]:= dataPlot = ListPlot[data, ImageSize  Scaled[0.8],
Frame  True, FrameLabel  {"Mass (g))", "Angle (radians)"},
LabelStyle  Larger, PlotStyle  Thick]

Out[14]=

-400 -200 0 200 400
0

1

2

3

4

Mass (g))

A
ng
le

(r
ad
ia
ns

)

Theoretical Curve: A straight-line fit.

Here we explore how to find the best-fit straight line by the method of least squares. First, define the

target function. Use the unknown items (intercept, a0, and slope, a1) as parameters to the function.

In[15]:= yfit[x_, a0_, a1_] := a0 + a1 x

Calculating χ2

Define a χ2 function for the linear fit. For given a0 and a1 values, compute the average of the differ-
ences squared between the data and the fit value. Within the fuction, the data is in {i, m} pairs, so we

pull out the current of the ith valuewith data〚i, 1〛, and the mass of the ith valuewith data〚i, 2〛. You can

use the Classroom Assistant Pallete to format the sum, or you can use Mathematica’s Sum[] function

directly. Use whichever is easier for you to read. The denominator has the ‘-2’ because with N data

points and 2 free parameters, there are only N-2 degrees of freedom.

In[16]:= calculateChisq[data_, a0_, a1_] :=

1

Length[data] - 2


i=1

Length[data]

(yfit[data〚i, 1〛, a0, a1] - data〚i, 2〛)2

In[19]:= calculateChisq[data_, a0_, a1_] :=
1

Length[data] - 2

Sum(yfit[data〚i, 1〛, a0, a1] - data〚i, 2〛)2, {i, 1, Length[data]}

chisq-linear-fit.nb 3

Initial Explorations

This command builds an interactive window showing the data, the current fit, and the chi squared

value (as the plot title). It draws vertical lines from each data point to the fit line. Move the a0 and a1

sliders to minimize χ2. Mathematica’s “Filling” option gets confused if the data isn’t sorted, so let’s go

ahead and sort the data by the first entry in each line.

In[20]:= data = SortBy[data, First]
Out[20]=

{{-400, 1.505}, {-350, 1.645}, {-300, 1.8}, {-250, 1.98}, {-200, 2.18}, {-150, 2.38},
{-100, 2.6}, {-50, 2.8}, {0, 3.005}, {0, 3.005}, {50, 3.205}, {100, 3.405},
{150, 3.62}, {200, 3.83}, {250, 4.025}, {300, 4.235}, {350, 4.46}, {400, 4.645}}

4 chisq-linear-fit.nb

In[22]:= Manipulate[
fitted = Table[{data〚i, 1〛, yfit[data〚i, 1〛, a0, a1]}, {i, 1, Length[data]}];
Show[{ListPlot[{data, fitted },

Filling  {1  {{2}, {Red, Black}}}, PlotLegends  {"data", "fitted"}],
Plot[yfit[x, a0, a1], {x, -450, 450}]},

PlotLabel  calculateChisq[data, a0, a1],
LabelStyle  Larger, ImageSize  Scaled[0.8]] ,

{{a0, 3}, 1.5, 4.5, 0.005, Appearance  "Open"},
{{a1, 0}, -0.01, 0.01, 0.0002, Appearance  "Open"}

]

Out[22]=

a0

2.995

a1

0.0038

-400 -200 200 400

1

2

3

4

0.00472031

data

fitted

Minimizing χ2

Picking the intercept a0 = 3 (close to the expected value), look at how χ2 varieswith a1.

chisq-linear-fit.nb 5

In[23]:= PlotcalculateChisq[data, 3.0, a1], {a1, 0.003, 0.005}, AxesLabel  "a1", "χ2"
Out[23]=

0.0035 0.0040 0.0045 0.0050
a1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

χ2

Picking a1 = 0.004 (again, close to the expected value), look at how χ2 varieswith a0.

In[24]:= PlotcalculateChisq[data, a0, 0.004], {a0, 2.8, 3.2 }, AxesLabel  "a0", "χ2"
Out[24]=

2.9 3.0 3.1 3.2
a0

0.01

0.02

0.03

0.04

0.05

χ2

Ultimately, the “best” fit involves a two-dimensional minimization of χ2. Sometimes it helps to visual-
ize this sort of thing as a 3D plot or a density plot.

6 chisq-linear-fit.nb

In[25]:= Plot3DcalculateChisq[data, a0, a1], {a0, 2.8, 3.2},

{a1, 0.003, 0.005}, AxesLabel  "a0", "a1", "χ2"
Out[25]=

In[26]:= DensityPlot[calculateChisq[data, a0, a1], {a0, 2.8, 3.2}, {a1, 0.003, 0.005}]
Out[26]=

Mathematica can find the minimum here as well.

In[27]:= Clear[a0, a1]
result = FindMinimum[calculateChisq[data, a0, a1], {a0, a1}]

Out[28]=

{0.00105466, {a0  3.01806, a1  0.00401936}}

Finally, here is the best fit curve.

chisq-linear-fit.nb 7

In[29]:= Show[{
dataPlot,
Plot[yfit[x, a0, a1] /. result〚2〛, {x, -450, 450}, PlotStyle  Red]

}]

Out[29]=

-400 -200 0 200 400
0

1

2

3

4

Mass (g))

A
ng
le

(r
ad
ia
ns

)

Linear Model Fit
Mathematica can do this minimization automatically. The LinearModelFit[] function searches the

"parameter space" for the minimum value of χ2. It reports a "Confidence Interval" that reflects the

curvature of χ2 -- how much you can vary either parameter without making χ2 too large.

One other interesting thing to note: Note how our χ2 space has a "valley" (dark purple in the Density-
Plot) where you can explore what happens if you change a0 but don’t change a1, and vice-versa. This is

reflected in the LinearModelFit[] report. Look at the "Correlation Matrix." It tells you, in essence, how

well correlated each parameter is with the other. The 1's along the diagonal mean a0 is perfectly

correlated with a0 (obviously) and a1 is perfectly correlated with a1. The off-diagonal elements tell you

that a0 and a1 are mostly uncorrelated -- increasing one doesn’t really affect the other. This isn’t
always true for fits. Sometimes, a change in one parameter can be partially compensated for by a

change in another. In those cases, they are not completely independent parameters, and the Correla-
tion Matrix elements are further from zero.

In[30]:= fit = LinearModelFit[data, {1, x}, x]
Out[30]=

FittedModel 3.02 + 0.00402 x 

8 chisq-linear-fit.nb

See the on-line help for more information on dealing with the results from LinearModelFit. Here are

some examples of things you can do with it.

In[31]:= fit["BestFit"]
Out[31]=

3.01806 + 0.00401936 x

In[32]:= fit["BestFitParameters"]
Out[32]=

{3.01806, 0.00401936}

In[33]:= fit["ParameterConfidenceIntervalTable"]
Out[33]=

Estimate Standard Error Confidence Interval

1 3.01806 0.00765455 {3.00183, 3.03428 }

x 0.00401936 0.0000321555 {0.0039512 , 0.00408753 }

In[34]:= fit["CorrelationMatrix"] // MatrixForm
Out[34]//MatrixForm=

1. 1.86783×10-32

2.51254×10-32 1.

In[35]:= Show[{dataPlot, Plot[fit[x] , {x, -450, 450}, PlotStyle  Red]}]
Out[35]=

-400 -200 0 200 400
0

1

2

3

4

Mass (g))

A
ng
le

(r
ad
ia
ns

)

In[36]:= fit["EstimatedVariance"]
Out[36]=

0.00105466

This is the same as our χ2 .

chisq-linear-fit.nb 9

In[37]:= {a0, a1} = fit["BestFitParameters"]
Out[37]=

{3.01806, 0.00401936}

In[38]:= calculateChisq[data, a0, a1]
Out[38]=

0.00105466

Interpreting the Uncertainties.

Mathematica gives you the uncertainties in the parameters, but you should also check whether the fit is

reasonable. In particular, do the differences between the data points and the fit make sense? Is the

size believable? Are there systematic trends?

Mathematica will report the “FitResiduals”, which are the differences between each data point and the

fitted curve. The average square of the residuals is called the “EstimatedVariance”. (Actually you

divide by N-2, since there are 2 degrees of freedom used up by the two fit parameters, a0 and a1.

In[39]:= fit["FitResiduals"]
Out[39]=

{0.0946895, 0.0337214, -0.0122467, -0.0332149, -0.034183, -0.0351511,
-0.0161193, -0.0170874, -0.0130556, -0.0130556, -0.0140237, -0.0149918,
-0.000959967, 0.0080719, 0.00210376, 0.0111356, 0.0351675, 0.0191993}

In[40]:= Total[fit["FitResiduals"]^2]/(Length[fit["FitResiduals"]] - 2)
Out[40]=

0.00105466

In[41]:= fit["EstimatedVariance"]
Out[41]=

0.00105466

The square root of the estimated variance is thus the RMS (root mean square) error -- the “typical”

amount by which the fitted line misses the data. It has the same units as the original y values, and

should be compared to the y uncertainties.

In[42]:= Sqrt[fit["EstimatedVariance"]]
Out[42]=

0.0324755

Are differences of 0.03 radians meaningful? For this experiment, you can read the scale to at lead ±

0.02 radians, and you can likely interpolate to 0.01 or even 0.005 radians, so variances of 0.03 radians

seem larger than can be explained by simple random measurement error. Looking carefully at the

graph, it seems likely that we twisted the wire a little beyond its linear range, and are starting to see a

slightly nonlinear response.

Residual Plot

10 chisq-linear-fit.nb

Sometimes, it is helpful to look at the residuals in more detail to try to understand why the fit and data

might not agree. A residual plot can sometimes highlight trends within the data that might not be

evident in the initial fit plot and that might warrant additional investigation.

In[43]:= residuals =

Table[{data〚i, 1〛, (data〚i, 2〛 - fit[data〚i, 1〛])}, {i, 1, Length[data]}]
Out[43]=

{{-400, 0.0946895}, {-350, 0.0337214}, {-300, -0.0122467},
{-250, -0.0332149}, {-200, -0.034183}, {-150, -0.0351511},
{-100, -0.0161193}, {-50, -0.0170874}, {0, -0.0130556}, {0, -0.0130556},
{50, -0.0140237}, {100, -0.0149918}, {150, -0.000959967}, {200, 0.0080719},
{250, 0.00210376}, {300, 0.0111356}, {350, 0.0351675}, {400, 0.0191993}}

In[44]:= ListPlot[residuals, AxesLabel  {"mass (g)", "Residual Angle (rad)"},
LabelStyle  Larger, ImageSize  Large]

Out[44]=

-400 -200 200 400
mass (g)

-0.04

-0.02

0.02

0.04

0.06

0.08

0.10
Residual Angle (rad)

Other Fit Properties.

This is a complete list of all available properties of the fit.

chisq-linear-fit.nb 11

In[45]:= fit["Properties"]
Out[45]=

{AdjustedRSquared, AIC, AICc, ANOVA, BasisFunctions, BetaDifferences,
BestFit, BestFitParameters, BIC, CatcherMatrix, CoefficientOfVariation,
CookDistances, CorrelationMatrix, CovarianceMatrix, CovarianceRatios, Data,
Weights, DesignMatrix, DurbinWatsonD, Eigenstructure, EstimatedVariance,
FitDifferences, FitResiduals, Function, FVarianceRatios, HatDiagonal,
MeanPredictions, MeanPredictionBands, ParameterEstimates, PartialSumOfSquares,
PredictedResponse, Properties, Response, RSquared, SequentialSumOfSquares,
SingleDeletionVariances, SinglePredictions, SinglePredictionBands,
StandardizedResiduals, StudentizedResiduals, VarianceInflationFactors}

A note about the “Rsquared” value

I n [] : = fit["RSquared"]
Ou t [] =

0.998977

This is close to 1.0. Does that mean you have a good fit? Not necessarily. Consider the following

parabolic data set:

In[46]:= parab = Tablex, 1.0 + 0.5 x + 0.3 x2, {x, 1, 20, 2}
Out[46]=

{{1, 1.8}, {3, 5.2}, {5, 11.}, {7, 19.2}, {9, 29.8},
{11, 42.8}, {13, 58.2}, {15, 76.}, {17, 96.2}, {19, 118.8}}

Let’s try fitting it with a straight line

In[47]:= pfit = LinearModelFit[parab, x, x]
Out[47]=

FittedModel -19.1 + 6.5 x 

In[48]:= pfit["ParameterConfidenceIntervalTable"]
Out[48]=

Estimate Standard Error Confidence Interval

1 -19.1 6.18902 {-33.3719, -4.82809 }
x 6.5 0.536656 {5.26247 , 7.73753 }

12 chisq-linear-fit.nb

In[53]:= Show[{ListPlot[parab, PlotStyle  Thick],
Plot[pfit[x] , {x, 0, 20}, PlotStyle  Red]},

LabelStyle  Larger, AxesLabel  {"x", "p"}]
Out[53]=

5 10 15
x

20

40

60

80

100

120

p

In[50]:= pfit["RSquared"]
Out[50]=

0.948287

This is still close to 1.0, even though we’re missing a systematic trend in the data. The R2 value does

not distinguish between data points that scatter about a line and those that deviate systematically

from the line. You need to look at the actual graph. Obviously, a parabola is the right fit here:

In[51]:= pfit2 = LinearModelFitparab, x, x2, x
Out[51]=

FittedModel 1. + 0.5 x + 0.3 x 2 

In[54]:= Show[{ListPlot[parab],
Plot[{pfit[x], pfit2[x]} , {x, 0, 20}, PlotLegends  Automatic]},

LabelStyle  Larger, AxesLabel  {"x", "p"}]
Out[54]=

5 10 15
x

20

40

60

80

100

120

p

1

2

chisq-linear-fit.nb 13

Summary Presentation
Given the data set:

I n [] : = data
Ou t [] =

{{-400, 1.505}, {-350, 1.645}, {-300, 1.8}, {-250, 1.98}, {-200, 2.18}, {-150, 2.38},
{-100, 2.6}, {-50, 2.8}, {0, 3.005}, {0, 3.005}, {50, 3.205}, {100, 3.405},
{150, 3.62}, {200, 3.83}, {250, 4.025}, {300, 4.235}, {350, 4.46}, {400, 4.645}}

Fit to a straight line

I n [] : = fit = LinearModelFit[data, {1, x}, x]
Ou t [] =

FittedModel 3.01806 + 0.00401936 x 

Find the values for the slope and intercept, along with their uncertainties.

I n [] : = fit["BestFitParameters"]
fit["ParameterConfidenceIntervalTable"]

Ou t [] =

{3.01806, 0.00401936}

Ou t [] =
Estimate Standard Error Confidence Interval

1 3.01806 0.00765455 {3.00183, 3.03428 }

x 0.00401936 0.0000321555 {0.0039512 , 0.00408753 }

Look at how far off (in radians) a typical data point is from the best-fit line. Think about this value. Is it
reasonable?

I n [] : = Sqrt[fit["EstimatedVariance"]]
Ou t [] =

0.0324755

Show the data and the fit on the same graph.

14 chisq-linear-fit.nb

I n [] : = Show[{ListPlot[data], Plot[fit[x] , {x, -450, 450}, PlotStyle  Red]},
Frame  True, LabelStyle  Larger, FrameLabel  {"Mass (g)", "Angle (radians)"}]

Ou t [] =

-400 -200 0 200 400
0

1

2

3

4

Mass (g)

A
ng
le

(r
ad
ia
ns

)

chisq-linear-fit.nb 15

