
Phys 238: Homework #03
Numerical Integration with NDSolve

In[1]:= Clear["Global`*"]; DateString[]

Out[1]= Wed 19 Mar 2025 16:27:58

In[2]:= SetDirectory[NotebookDirectory[]];
(* Find and save files alongside this notebook. *)

1. The Simple Harmonic Oscillator

Physical constants

In[3]:= k = 1.5 (* Spring constant, in N/m *);
m = 0.08 (* mass, 80 g expressed in kg *);

Derived physical constants

In[5]:= ω = Sqrt[k/m];
T = 2 π / ω;

Initial conditions and total time

In[7]:= x0 = 0.8; (* amplitude of the motion, in m *)

v0 = 0.0; (* Release from rest *)

tstop = 10; (* Total time to run *)

Do the numerical integration

In[10]:= shm = NDSolveValue[
{m x''[t]  - k x[t], x[0]  x0, x'[0]  v0},
x,
{t, 0, tstop}]

Out[10]=

InterpolatingFunction Domain : {{0., 10. }}
Output: scalar 

Results

Assignment 1

In[11]:= Plot[shm[t], {t, 0, tstop}, PlotLabel  "Simple Harmonic Motion",
LabelStyle  Larger, Frame  True,
FrameLabel  {"t (s)", "x (m)"}, ImageSize  Scaled[0.7]]

Out[11]=

0 2 4 6 8 10

-0.5

0.0

0.5

t (s)

x
(m

)

Simple Harmonic Motion

Assignment 2

In[12]:= approx = shm[10]
Out[12]=

0.621541

In[13]:= exact = x0 Cos[ω 10]
Out[13]=

0.621541

These two are very close. The differences are down in the 8th decimal place.

In[14]:= (approx - exact)
Out[14]=

-1.44007×10-7

2. Adding Linear Damping

In[15]:= b = 0.1 (* Ns/m *);

2 ps03-math.nb

In[16]:= damped = NDSolveValue[
{m x''[t]  - k x[t] - b x'[t], x[0]  x0, x'[0]  0},
x,
{t, 0, tstop}]

Out[16]=

InterpolatingFunction Domain: {{0., 10. }}
Output: scalar 

Assignment 3

In[17]:= Plot[damped[t], {t, 0, tstop}, PlotRange  All, Frame  True,
FrameLabel  {"t (s)", "x (m)"}, LabelStyle  Larger,
PlotLabel  "Harmonic Oscillator with Linear Damping", ImageSize  Scaled[0.7]]

Out[17]=

0 2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

t (s)

x
(m

)

Harmonic Oscillator with Linear Damping

3. Adding Quadratic Damping

In[18]:= c = 0.1 (* Ns2m2*);

In[19]:= airdrag = NDSolveValue[
{m x''[t]  - k x[t] - c Abs[x'[t]] x'[t], x[0]  x0, x'[0]  v0},
x,
{t, 0, tstop}]

Out[19]=

InterpolatingFunction Domain: {{0., 10. }}
Output: scalar 

ps03-math.nb 3

Assignment 4

In[20]:= Plot[{damped[t], airdrag[t]}, {t, 0, tstop},
PlotLegends  {"Linear", "Quadratic"}, Frame  True,
FrameLabel  {"t (s)", "x (m)"}, LabelStyle  Larger,
PlotRange  All, ImageSize  Scaled[0.7]]

Out[20]=

0 2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

t (s)

x
(m

)

Linear

Quadratic

Assignment 5

Initially, the oscillator is moving quickly, and the quadratic damping is more effective. At later times,
however, when the velocity is small, the v2 term is even smaller, so the quadratic damping term is

less effective. Thus the quadratic damping curve decays rapidly at first, but maintains small-ampli-
tude oscillations much longer.

4. Using NDSolve with NonlinearModelFit

In[21]:= Vvst = Select[Import["TO-20250221-airdrag-1.csv", "CSV"], VectorQ[#, NumberQ] &];

Apply my angle calibration. (There are more concise ways to do this with functions like Map, but the

Table form is clear and easy to understand.)

In[22]:= dθdV = 0.558;

In[23]:= θvst = Table[{Vvst〚i, 1〛, dθdV * Vvst〚i, 2〛}, {i, 1, Length[Vvst]}];

In[24]:= dataPlot = ListPlot[θvst, PlotStyle  Red, PlotRange  All, LabelStyle  Larger,
AxesLabel  {"t (s)", "Angle (radians)"}, ImageSize  Scaled[0.8]];

Enter the model for motion with air drag. Allow for a small angle offset so that
the relaxed position is not exactly 0. (This depends on the ‘Zero Adjust’ knob on the apparatus.) The

4 ps03-math.nb

use of ParametricNDSolveValue is suggested in the NonlinearModelFit help page. See the first example

under “Generalizations & Extensions”.

In[25]:= Clear[ω0, c, θ0, v0, θoff]

In[26]:= airdrag =

ParametricNDSolveValue[
{θ''[t]  - ω0^2 (θ[t] - θoff) - c Abs[θ'[t]] θ'[t],
θ[0]  θ0, θ'[0]  v0},
θ,
{t, 0, 30}, {ω0, c, θ0, v0, θoff}]

Out[26]=

ParametricFunction Expression : θ
Parameters: {ω0, c, θ0, v0, θoff }



Test the function using the suggested values:

In[27]:= airdrag[2.5, 0.5, 0.7, -0.02, 0.1][12]
Out[27]=

0.106687

Assignment 6

It is important to make a good first guess at the parameters.

ps03-math.nb 5

In[28]:= Manipulate[Show[
{dataPlot, Plot[airdrag[ω0, c, θ0, v0, 0][t], {t, 0, 30}, PlotRange  All]}],

{{ω0, 2.5}, 2.0, 3.0, 0.01, Appearance  "Labeled"},
{{c, 0.5}, 0.1, 2.0, 0.05, Appearance  "Labeled"},
{{θ0, 0.5}, -1, 1, 0.05, Appearance  "Labeled"},
{{v0, 0}, -4, 4, 0.05, Appearance  "Labeled"}

]

Out[28]=

ω0 2.7

c 0.75

θ0 0

v0 1.5

5 10 15 20 25 30
t (s)

-0.2

0.2

0.4

Angle (radians)

Reasonable guesses are: ω0 = 2.7, c = 0.75, θ0 = 0, v0 = 1.5, θoff = -0.01.

6 ps03-math.nb

Assignment 7

In[29]:= Clear[ω0, c, θ0, v0, θoff];
airdragFit = NonlinearModelFit[θvst, airdrag[ω0, c, θ0, v0, θoff][t],

{{ω0, 2.7}, {c, 0.75}, {θ0, 0}, {v0, 1.5}, {θoff, -0.1}}, t]

ParametricNDSolveValue : An invalid NDSolve`SensitivityMethod method data object was encountered at the

point t == 0.`.

ParametricNDSolveValue : An invalid NDSolve`SensitivityMethod method data object was encountered at the

point t == 0.`.

ParametricNDSolveValue : An invalid NDSolve`SensitivityMethod method data object was encountered at the

point t == 0.`.

General : Further output of ParametricNDSolveValue::mdata will be suppressed during this calculation.

NonlinearModelFit : The step size in the search has become less than the tolerance prescribed by the

PrecisionGoal option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.
There is a possibility that the method has stalled at a point that is not a local minimum.

Out[29]=

FittedModel InterpolatingFunction 
Domain: {{0., 30. }}
Output: scalar [t] 

In[30]:= Show[{dataPlot,
Plot[airdragFit[t], {t, 0, 30}, PlotRange  All, PlotLegends  {"Fit"}]}]

Out[30]=

5 10 15 20 25 30
t (s)

-0.2

0.2

0.4

Angle (radians)

Fit

Assignment 8

In[31]:= airdragFit["BestFitParameters"]
Out[31]=

{ω0  2.7074, c  0.74485, θ0  -0.0205145, v0  1.60616, θoff  -0.00896301}

ps03-math.nb 7

In[32]:= airdragFit["ParameterConfidenceIntervalTable"]

General : Exp [-76334.4] is too small to represent as a normalized machine number; precision may be lost.

General : Exp [-24241.5] is too small to represent as a normalized machine number; precision may be lost.

General : Exp [-24246.4] is too small to represent as a normalized machine number; precision may be lost.

General : Further output of General::munfl will be suppressed during this calculation.

Out[32]=
Estimate Standard Error Confidence Interval

ω0 2.7074 0.000136151 {2.70713, 2.70767 }

c 0.74485 0.00123287 {0.742433, 0.747266 }

θ0 -0.0205145 0.000541206 {-0.0215753, -0.0194537 }
v0 1.60616 0.0026576 {1.60095, 1.61137 }

θoff -0.00896301 0.0000761471 {-0.00911227 , -0.00881376 }

Assignment 9

Sqrt[airdragFit["EstimatedVariance"]] (* RMSE in radians*)
Out[33]=

0.0092475

Sqrt[airdragFit["EstimatedVariance"]]/dθdV (* RMSE in volts *)

Out[35]=

0.0165726

An overall variation of less than 0.01 radians is small. It is about the same size as the residual scatter
in the voltage calibration plot, although that scatter was likely due to limits of my ability to manually

read the angle scale, rather than the limits of the voltage sensor. Looking at it differently, the RMSE

here is about 0.016 Volts, well within the measurement capability of LoggerPro. The data lines do

not show any visible noise anywhere near this large.

Note too that this scatter is not random. There is a slight systematic trend visible in the plot in that
the fit (blue line) decays a little too quickly at early times, and not quickly enough at later times. This

suggests that the model is not quite a complete description of the data.

Assignment 10

In[44]:= TableForm[airdragFit["CorrelationMatrix"],
TableHeadings  {(* Rows: *) {"ω0", "c", "θ0", "v0", "θoff"},

(* Columns: *){"ω0", "c", "θ0", "v0", "θoff"} }]

Out[44]//TableForm=

ω0 c θ0 v0 θoff
ω0 1. 0.0542745 -0.583087 0.244083 0.00479782
c 0.0542745 1. -0.0947344 0.571559 -0.0732339
θ0 -0.583087 -0.0947344 1. -0.370296 0.146858
v0 0.244083 0.571559 -0.370296 1. -0.122348
θoff 0.00479782 -0.0732339 0.146858 -0.122348 1.

There is a negative correlation between ω0 and θ0, and a positive correlation between c and v0.
For ω0 and θ0, increasing the frequency makes the peaks come sooner, but decreasing θ0 delays

8 ps03-math.nb

them so they come later. This only really works for the first few peaks; changing ω0 means the later
peaks are not aligned with the fit. However, since they are smaller, they contribute less to the

overall error.

The initial velocity and drag are correlated because giving it a larger initial velocity can be compen-
sated by increasing the drag. Again, this does not work as well for the later peaks, but since they are

all smaller, they contribute less to the overall error.

ps03-math.nb 9

