
Physics 238—Intermediate Physics Lab
Homework Assignment #3

Due Friday, March 14, 2025, 1:15 p.m.

In the torsional oscillator experiment, you found that the linear damping model did
not describe the trial with air drag very well. In this assignment, you will see how to use
Mathematica to numerically integrate the equations of motion, and then use that model
to fit your data with air drag.

This work is presented here as a sequence of assignments. If you find it convenient,
you may simply turn in one Mathematica notebook with your results, but please trim out
irrelevant material before printing and submitting it.

This assignment is fairly long; it will be weighted as two homework assignments.

1 The Simple Harmonic Oscillator

Consider a mass m attached to an ideal horizontal spring with spring constant k. The
differential equation governing the motion is then simply

mẍ = −kx . (1)

Take the initial conditions to be x(0) = x0 and ẋ(0) = v0. Your goal is to follow the
evolution of the system with time, for times running from 0 to 10 seconds.

To be concrete, take the following numerical values:

Variable Value Units Description

k 1.5 N/m Spring constant

m 0.08 kg Mass, 80 g.

x0 0.80 m Initial position

v0 0.0 m/s Initial velocity

tstop 10 s Total time to run

1.1 Setting up the Simulation

Start Mathematica. Put a title at the top of your notebook. (Use the Format → Style

menu. “Title” is rather large; feel free to pick something smaller.)
Put your name in a text cell near the top. Also give the date. (The command

DateString[] is handy for this.) I also find it convenient to start each notebook with
Clear["Global‘*"] to erase any possible lingering definitions from earlier work.

Add in the physical constants:

k = 1.5 (* Spring constant *);

m = 0.08 (* mass *);
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You can add an in-line comment in Mathematica by enclosing text in (* and *). This
is a helpful way to document your variables. Note too the trailing semicolon—it keeps
Mathematica from printing out the result of each line.

It is also handy to add in a definition for the expected angular frequency and period,

ω =

√
k

m

T =
2π

ω
.

(You can enter the square root either by using the Classroom Palette or by typing Sqrt[k/m].
You can enter π by typing Pi, by using the Classroom Palette, or by the keyboard short-
cut Escape p Escape.)

1.2 Numerical Integration

Although it is possible to solve Eq. ?? analytically, that won’t always be the case. Fortu-
nately, it is also possible to approximate the solution numerically.

Mathematica has a built-in function, NDSolveValue, that handles numerical integration
very efficiently. It chooses the numerical method and optimal step size automatically, and
simply returns a function that you can evaluate to find the result. You can use it as follows:

x0 = 0.8 (* Initial position *);

v0 = 0 (* Initial velocity *);

tstop = 10 (* Total time to run *);

shm = NDSolveValue[

{m x’’[t] == -k x[t], x[0] == x0, x’[0] == v0},

x,

{t, 0, tstop}

]

The NDSolveValue function takes three arguments, separated by commas and enclosed
in square brackets. Since the arguments are fairly long, this example breaks them across
several lines—one line for each argument. The first argument (in curly braces) is the list of
equations to solve, including any boundary conditions. Note that in Mathematica, x’[t]
means to take a derivative of x[t]. Note too that the equations are written with a double
equals sign.1 The second argument tells NDSolveValue what to solve for, and the third
tells it the independent variable (t) and over what time interval to run the integration.
The answer is returned as a function (shm[t]) that can be evaluated and plotted.

1For more details, see Equal in the online help. Click on the Details triangle and note the first entry:
lhs == rhs is used to represent a symbolic equation, to be manipulated using functions like Solve.
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Copy and Paste Warning: You are encouraged to copy and paste code from this
document, but you might have to manually make some small edits. For example, the
derivatives in x’[t] and x’’[t] are made with the single quote key on the keyboard, but
some software may render them as “smart quotes” instead. If you get a syntax error, try
deleting the quote marks and re-typing them in by hand.

1.3 Results

Please give each assignment an appropriate header in your notebook (e.g. by selecting
a reasonable entry from the Format → Style menu). Please make sure all graphs have
appropriate labels. Any comments may be inserted using text cells.

Assignment 1: Plot the result for x(t) for t = 0 to 10 s. You can do that with a simple
command such as

Plot[shm[t], {t, 0, tstop}]

You should get a cosine function that oscillates between 0.8 and −0.8.
This simple plot is fine for trying things out, but when you are preparing a plot for

presentation or submission, you should make sure the axes are labeled, and that each plot
either has a label or is described by an appropriate caption in your final document. Most
graphs also include a frame around the whole plot. The default font used by Mathematica
for the axis labels is also quite small, and is often hard to read. Finally, it is often helpful
to make the plot larger; this example makes it 70% of the page width.

Plot[shm[t], {t, 0, tstop},

PlotLabel -> "Simple Harmonic Motion",

LabelStyle -> Larger, Frame -> True,

FrameLabel -> {"t (s)", "x (m)"}, ImageSize -> Scaled[0.7]]

In the interest of saving space, examples in this writeup will not show these options
every time, but you should include them as needed before submitting your final noteboook.

Assignment 2: In this problem, you can also compute the motion analytically,

xanalytic(t) = x0 cos(ωt) .

Compute the analytic prediction for x(10) and compare to Mathematica’s value shm[10].
Do they agree? If not, how much do they differ by?

2 Adding Linear Damping

Next, you will consider what happens if you add a linear damping term, also known as
viscous damping. Specifically, consider the new equation
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mẍ = −kx− bẋ , (2)

where b is the damping coefficient.

Assignment 3: Set b = 0.1Ns/m and solve Eq. ?? for the resulting motion. Call your
answer damped[t]. Plot the result for x(t) for t = 0 to 10 s. Note that Mathematica tries
to zoom in on the “interesting” part of the graph. You should force Mathematica to show
the full range by adding the option PlotRange->All. Also add in appropriate axis labels.

3 Adding Quadratic Damping

Finally, you will consider a different model for damping, namely quadratic damping. This
would be appropriate for resistance due to air drag, for example.

Specifically, consider the new equation

mẍ = −kx− c|ẋ|ẋ , (3)

where c is a constant. (The combination −|ẋ|ẋ has the magnitude of v2, but always
has a sign opposite v, so that the drag force opposes the motion.) In Mathematica, you
can take the absolute value with the Abs[ ] function.

Assignment 4: Set c = 0.1Ns2/m2 and solve Eq. ?? for the resulting motion. Call your
answer airdrag[t]. Plot airdrag[t] vs. t for t = 0 to 10 s. On the same graph, include
the result for viscous drag from the previous part. One way to plot two functions at once
is by giving the Plot command a list of functions (enclosed in curly braces) instead of just
a single function:

Plot[{damped[t], airdrag[t]}, {t, 0, tstop},

PlotLegends -> {"Viscous damping", "Air drag"}]

When you have more than one plot, it is important to label them. The PlotLegends

option does that. It takes a list of plot labels (enclosed in curly braces)—one label for each
plot. As always, add in appropriate readable labels.

Assignment 5: Comment on the qualitative differences between linear and quadratic
damping. Do they correspond to what you observed in the torsional oscillator experiment?

4 Using NDSolve with NonlinearModelFit

Lastly, you will use Mathematica to fit Eq. ?? to your data from the torsional oscillator
experiment where the drag was provided by the air paddles. Specifically, assume that the
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differential equation is

θ̈(t) = −ω2
0 (θ(t)− θoff)− c

∣∣∣θ̇(t)∣∣∣ θ̇(t) (4)

subject to the initial conditions θ(0) = θ0 and θ̇(0) = v0. (The constant θoff accounts for
the fact that the voltage was not exactly zero when the oscillator was at equilibrium.)

You will use NonlinearModelFit to fit Eq. ?? to your data. There are actually 5 fit
parameters: 3 for the differential equation: ω0, θoff , c, and two for the initial conditions:
θ0 and v0.

Roughly speaking, the plan is to use NonlinearModelFit to apply the principle of
least squares. That is, you will pick a particular set of parameters, and Mathematica
will use NDSolveValue to create a model solution, and evaluate χ2 for that model. Then
Mathematica will try varying one (or more) of the parameters slightly to see if χ2 increases
or decreases, and continue varying parameters until a minimum is found.

You have already seen how NonlinearModelFit sometimes needs help finding sensible
starting guesses for this process. A second challenge in this problem is that Mathematica
will tend to keep calling NDSolveValue over and over again with the same parameters
to calculate χ2 such that the process becomes unreasonably slow. Fortunately, there is a
variant function called ParametricNDSolveValue that avoids this problem by temporarily
storing (or “caching”) computed solutions. (This use of ParametricNDSolveValue is sug-
gested in the NonlinearModelFit help page. See the first example under “Generalizations
& Extensions”.)

To get started, perform the following steps:

1. Import your data for the torsional oscillator with air paddles. Apply your voltage
calibration to generate a plot of angle vs. time. If you call your data “data”, then you
can assign that plot to a variable called dataPlot with a command like the following:

dataPlot = ListPlot[data, PlotStyle -> Red, PlotRange -> All,

LabelStyle -> Larger,

AxesLabel -> {"t (s)", "Angle (radians)"},

ImageSize -> Scaled[0.8]];

You do not need to print the plot just yet.

2. Enter the model for motion with air drag. The syntax is a bit odd, but the following
command should work:
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Clear[\[Omega]0, c, \[Theta]0, v0, \[Theta]off]

airdrag =

ParametricNDSolveValue[

{ \[Theta]’’[t] == - \[Omega]0^2 ( \[Theta][t] - \[Theta]off ) -

c Abs[\[Theta]’[t]] \[Theta]’[t],

\[Theta][0] == \[Theta]0, \[Theta]’[0] == v0

},

\[Theta],

{t, 0, 30}, {\[Omega]0, c, \[Theta]0, v0, \[Theta]off}]

The first line ensures that any earlier definitions of the parameters from previous
assignments are cleared. Note that you can enter θ directly; the form shown here is
the plain text input form. If you copy and paste this code, Mathematica ought to
insert the θ for you. Note too that many PDF renderers will change the single quote
marks to “Smart” quotes, and you may have to manually change them back to single
quote marks.

3. The syntax for using airdrag is a bit odd, so it is important to test your model with
some simple inputs. In general, you would type airdrag[ω0, c, θ0, v0, θoff][t].
So, for example, to evaluate the model for ω0 = 2.5, c = 0.5, initial position θ0 =
0.7, initial velocity v0 = −0.02 offset θoff = 0.1, and time t = 12, you would type
airdrag[2.5, 0.5, 0.7, -0.02, 0.1][12] That should yield 0.106687. If you wanted to
plot the solution for those parameters, for t from 0 to 30 s, you would type

Plot[airdrag[2.5, 0.5, 0.7, -0.02, 0.1][t], {t, 0, 30}]

Assignment 6: It is important to start with reasonable guesses for all the parameters.
The Manipulate function is handy for this. Try the following command:

Manipulate[

Show[{

dataPlot,

Plot[airdrag[\[Omega]0, c, \[Theta]0, v0, 0][t], {t, 0, 30},

PlotRange -> All]

}],

{{\[Omega]0, 2.5}, 2.0, 3.0, 0.01, Appearance -> "Labeled"},

{{c, 0.5}, 0.1, 2.0, 0.05, Appearance -> "Labeled"},

{{\[Theta]0, 0.5}, -1, 1, 0.05, Appearance -> "Labeled"},

{{v0, 0}, -4, 4, 0.05, Appearance -> "Labeled"}

]
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This command will produce a plot showing the data (which you made earlier) and the
airdrag model, along with sliders allowing you to control 4 parameters: ω0, c, θ0, and v0.
(For simplicity, this plot sets θoff = 0. You may adjust that manually if needed.) Each
slider is controlled by a list (inside curly braces) of settings. For example,

{{c, 0.5}, 0.1, 2.0, 0.05, Appearance -> "Labeled"}

will give the c parameter an initial value of 0.5, and vary it between 0.1 and 2.0 in steps
of 0.05. The Appearance -> "Labeled" command means the value for the parameter will
appear as a label to the right of the slider. A small + sign next to the slider opens up
additional controls.

Adjust the sliders to get a reasonable first guess at a fit. Adjust the ranges in the
Manipulate command if you need to. List your parameters here.

Assignment 7: Now that you have a reasonable first guess at the fit parameters, you
can use them to run NonlinearModelFit. The syntax is similar to what you have used
before, but it is important to remember that the model gets input as

airdrag[\[Omega]0, c, \[Theta]0, v0, \[Theta]off][t]

You will probably see some warning messages, but if Mathematica is successful, you
will get a FittedModel output. Test your result with a plot:

Show[{dataPlot, Plot[airdragFit[t], {t, 0, 30}, PlotRange -> All]}]

Adjust your initial guesses until you are satisfied with the fit. Include the graph with
the fit overlaying the data in your final submission.

Assignment 8: List the fit parameters, along with their uncertainties. (The
"ParameterConfidenceIntervalTable" is appropriate here.) Again, you may see some
warning messages, but if the fit looks good you may ignore them.

Assignment 9: Find the root mean square error (RMSE) for the fit. Note that the units
are radians. Is your value reasonable for the fit? Do you note any significant systematic
errors?

Assignment 10: Consider the correlation between the different parameters. A useful
way to display this is with MatrixForm[airdragFit["CorrelationMatrix"]]. Are there
any large correlations? (You may ignore any correlation with an absolute value less than
0.5.) Qualitatively, can you relate any of those correlations to your observations varying
the sliders? For example, if the values for ω0 and c display a negative correlation, than
increases in ω0 can be at least somewhat offset by decreasing c. Such a correlation would
show up as the 1st row, 2nd column.


