Chapter 2: The Second Law Observation : There is a directionality
to many processes. Heat flows from a hotter to a cooler, not the other way We will see this is matter of probability sbut so high a pubably it a effectively in ein table General Plan: Look at describing ^a single system's states Allow A to interact with B $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ · See how states A + B evolve 3 car physical exapter D Einstein Solid 2) ideal 3) 2-state paramagnet (vanal) in public

2.) Two-state system Cartoon $sysA:$ coin $flip$. Two outcomes, "H" "T" $\frac{d}{f}$. Flip 4 coins some possible newly $2'$ - 16 possibility H H H T H H T H T T H H Jargon: Microstate: Specify the state of each $29.$ Particle Macrostate: specify some macroscopic property, e.g. 9.9 Heads Multiplicity : # of microstates correspondings $242 = 9$ $list$ than: $HHHT$ $H H T H$ $H T H H$ T H H H $r = \frac{1}{\sqrt{2}}$ = 2 = 16 = total #f microstager.

probability of 3 heads in 4 tosser is the $p_3p = \frac{1}{\Lambda} \frac{(3H)}{(ale)} = \frac{4}{16} = \frac{1}{16}$ formula (see text for derivation) N = Number of win
M = # of heads $M = H \notimes$ heads 1 $(N, m$ $\frac{10}{m}$ (N-m) $\frac{2}{m}$ (m $S''W$ choose m^{17} e - q - d (4,3) = $\frac{4!}{3!1!}$ = $\frac{4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(1)}$ = 4 Interpret There are 4 ways to pick the first $\frac{1}{4}$ $3 \times 10^{10} \times 2^{100}$ H $2 \frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ but those 3 H's could be arranged so we need to divide the θ
combination by 6 if we are θ in the mainstate: 3H's, $\frac{4.3.2}{(3.2)}$ $\frac{4.3.2}{3!}$ $\frac{4.3.2}{1!}$ $\frac{11(4,3)}{3!}$ $\frac{7!}{(4-3)!}$ $\frac{2}{1}$

See problem 2.1, 2.2 oto scale 2-state paramagnet $\begin{picture}(120,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115) \put(0,0){\dashbox{0.5}(110,115)$ Nr = # of spin up dipoler NJ = # of spin down dipoles $N = N_A + N_U$ Magnetie energy in an extend hid l $\Omega(N_{p})=(N_{p})=\frac{N_{p}!(N-N_{p})!}{N_{p}!(N-N_{p})!}$ $\frac{1}{\sqrt{1-\frac{1}{1}-\$