Problem 2.1

Problem 2.1. Suppose you flip four fair coins.

- (a) Make a list of all the possible outcomes, as in Table 2.1.
- (b) Make a list of all the different "macrostates" and their probabilities.
- (c) Compute the multiplicity of each macrostate using the combinatorial formula 2.6, and check that these results agree with what you got by brute-force counting.

Consider flipping 4 fair coins. The Mathematica function Tuples[] will generate all permutations of the set {"H", "T"}.

```
In[1]:= microstates = Tuples[{"H", "T"}, 4];
 In[2]:= TableForm[microstates]
Out[2]//TableForm=
            Н
                  Н
                       Н
       Н
       Н
            Н
                  Н
                       Т
       Н
            Н
                  Τ
       Н
            Н
                  Т
                       Т
       Н
            Т
                  Н
                       Н
       Н
            Т
                       Т
       Н
            Τ
                  Τ
                       Н
       Н
            Т
                  Т
                       Т
       Т
            Н
                  Н
                       Н
       Т
            Н
                  Н
                       Τ
       Т
            Н
                  Т
                       Н
       Τ
            Н
                       Τ
       Т
            Τ
                 Н
                       Н
       Т
            Т
                       Т
                  Н
       Т
            Т
                  Т
                       Н
       Τ
            Т
                       Τ
 ln[3]:= nstates = Length[microstates] (* Note this is the same as 2^4 *)
 Out[3]= 16
```

Count microstates with the 'Select' function. For example, to find all states with 3 "H", we simply Select[] all microstates that have 3 "H"s. Then the Length[] function can be used to count the length of that list, i.e. 4 microstates.

```
In[9]:= Select[microstates, Count[#, "H"] == 3 &]
Out[9]= {{H, H, H, T}, {H, H, T, H}, {H, T, H, H}, {T, H, H, H}}
In[10]:= Length[Select[microstates, Count[#, "H"] == 3 &]]
Out[10]=
```

In[11]:= macrostates =

Table[{n, multiplicity = Length[Select[microstates, Count[#, "H"] == n &]],
 multiplicity / nstates}, {n, 0, 4}]

Out[11]=

$$\left\{\left\{0, 1, \frac{1}{16}\right\}, \left\{1, 4, \frac{1}{4}\right\}, \left\{2, 6, \frac{3}{8}\right\}, \left\{3, 4, \frac{1}{4}\right\}, \left\{4, 1, \frac{1}{16}\right\}\right\}$$

In[12]:= TableForm[macrostates,

TableHeadings → {None, {"Number of Heads", "Multiplicity", "Probability"}}]

Out[12]//TableForm=

Number of Heads	Multiplicity	Probability
0	1	1 16
1	4	16
2	6	3 8
3	4	$\frac{1}{4}$
4	1	1/16

This is the same result we get from the combinatoric function (Binomial[n, m] in Mathematica).

In[13]:= TableForm[

Table[$\{m, multiplicity = Binomial[4, m], multiplicity/2^4\}, \{m, 0, 4\}$],
TableHeadings \rightarrow {None, {"Number of Heads", "Multiplicity", "Probability"}}]

Out[13]//TableForm=

Number of Head	ds Multiplicity	y Probability
0	1	<u>1</u> 16
1	4	1/4
2	6	3 8
3	4	1 4
4	1	$\frac{1}{16}$
		10