Phys 335:
Problem 2.35. According to the Sackur-Tetrode equation, the entropy of a monatomic ideal gas can become $negative$ when its temperature (and hence its energy) is sufficiently low. Of course this is absurd, so the Sackur-Tetrode equation must be invalid at very low temperatures. Suppose you start with a sample of helium at room temperature and atmospheric pressure, then lower the temperature holding the density fixed. Pretend that the helium remains a gas and does not liquefy. Below what temperature would the Sackur-Tetrode equation predict that S is negative? (The behavior of gases at very low temperatures is the main subject of Chapter 7.)

Phys 335: Problem 2.35 $S = Nk \left[ln \left(\frac{V}{N} \left(\frac{4 \pi n}{3h^2} \right)^{3/2} \left(\frac{U}{N} \right)^{3/2} \right) + \frac{5}{2} \right]$ S= kln 12 is always > 0. But the term in hu () could get negative In small enough argument. what conditions would give S = 0?

Consider Helium - a monatorie icleal

gas initially at p = 1 atm and

noom temperature $T_i = 300 \, \text{K}$. Suppose you

keep the cleasity N fixed but lower T. at what temperature will 5 = 0? Want $\ln \left(\frac{V}{N} \left(\frac{4\pi m}{34^2} \right)^{3/2} \left(\frac{U}{N} \right)^{3/2} \right) = -\frac{5}{2}$ $\frac{V}{N} \left(\frac{4\pi m^2}{3h^2} \right) \left(\frac{U}{N} \right)^{\frac{3}{2}} = e^{-5/2}$ U= = NRT, No U=3 RT V Vi RTi some the domity is

N = Ni = Pi constant and the system

follows The ideal gas law. $\left(\frac{k}{Rc}\right)\left(\frac{4\pi m}{3k^2}\right)^{3/2}\left(\frac{3}{2}kT\right)^{3/2} = e^{-5/2}$

solve for T.

$$\frac{3}{2}kT = \frac{p_i}{kT_i} \frac{3k^2}{4\pi m} e^{-5/2}$$

$$\frac{3}{2}kT = \frac{p_i}{kT_i} \frac{3k^2}{4\pi m} e^{-5/3}$$

$$T = \frac{2}{3k} \left(\frac{p_i}{kT_i}\right)^{3/3} \left(\frac{3k^2}{4\pi m}\right) e^{-5/3}$$

There are no obvious clever units shortcuts here. It might be suplest to convert everything to the usual SI basic units.

(See the Mathematica motebook in how to incorporate units into Mathematica,)

Pi= latin = 1.01 x105 N/m2 Ti= 300 K k= 1.381 x10 23 J/k

 $\frac{fi}{kTi} = 2.438 \times 10^{25} N$ $\frac{m^{2}J}{m^{2}J}$ Units. N $\frac{m^{2}J}{m^{2}(N-m)} = m^{3}$ This was the original density: 2.438 \times 10^{25} / m^{3} $h = 6.626 \times 10^{-34} J.S$ $m = 4.0 \times 10^{-34} kg | 1 mole$ $6.64 \times 10^{-27} kg$ $mole = 6.022 \times 10^{23} atoms$

$$T = \left(2.438 \times 10^{25/3}\right)^{2/3} \frac{(6.626 \times 10^{-34})^{2/3}}{(2.\pi)(6.626 \times 10^{-27})(1.381 \times 10^{-23})} = -5/3$$

Helium actually liquities aroul 4K 55
This regature entropy locan't lappen. At
these low temperatures, the ideal gas law
no longer applies. The weak interactions
between He atom can no longer be ignored.