Fermi-Dirac Distribution

In[41]:= **Clear["Global`*"]**

Use the Fermi-Dirac distribution.

In[42]:= **nFD[ϵ_, ^μ_, T_] :⁼ ¹ Exp**[(**ε** - μ) / (**k**T)] + 1 **// Quiet**

The chemical potential can by found by the normalization condition, $N = \int_0^\infty n(E) dE$. For a typical free electron gas model of ^a conductor, ^a value of ⁵ eV is reasonable. Use that for an illustrative graph. For extreme ranges, Mathematica issues warnings about loss of precision. We will ignore them here since they don't impact our qualitative results here.

```
In[43]:= k = QuantityMagnitude[
```

```
UnitConvert[Quantity[1., "BoltzmannConstant"], "Electronvolts" / "Kelvins"]]
(* Boltzmann's Constant in eV/K *)
```
 $Out[43] =$

0.0000861733

In[44]:= **μ = 5.00; (* in eV *)**

This plot shows the FD distribution for different temperatures, and keeps the very-low temperature graph on for comparison.

In[45]:= **N[nFD[5, μ, 1]]**

 $Out[45]=$

0.5

```
In [52]:= Manipulate [Plot [{nFD [\epsilon, \mu, 0.1], nFD [\epsilon, \mu, T] }, {\epsilon, 0, 10},
         LabelStyle  Larger, AxesLabel  {"ϵ (eV)", "nFD"},
         PlotLegends  {"Low T", StringForm["T = `` (K)", T]},
         PlotRange  {{0, 10}, {0, 1}}, ImageSize  Scaled[0.7]] // Quiet,
       {T, 10, 10 000, Appearance  "Open"}]
```
Out[52]=

