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Table 9-4 Values of OF using Eq. 9-29a and the electron concentrations of the metallic 

elements from Table 9-1. Values of the equivalent Fermi temperatures, Fermi velocities 

and Fermi wave vectors are also given. 

Element Bp(eV) 

Li 4.74 
Na 3.24 
K 2.12 
Rb 1.85 
Cs 1.59 
Cu 7.00 
Ag 5.49 
Au 5.53 
Be 14.3 
Mg 7.08 
Ca 4.69 
Sr 3.93 
Ba 3.64 
Fe 11.1 
Zn 9.47 
Cd 7.47 
Hg 7.13 
Al 11.7 
Ga 10.4 
In 8.63 
Tl 8.15 
Sn 10.2 
Pb 9.47 
Bi 9.90 
Sb 10.9 

5.51 X 104 

3.77 
2.46 
2.15 
1.84 
8.16 

6.38 
6.42 

16.6 
8.23 
5.44 
4.57 
4.23 

13.0 
11.0 
8.68 
8.29 

13.6 
12.1 
10.0 
9.46 

11.8 
11.0 
11.5 
12.7 

vF(cm/sec) 

l.29x 108 

1.07 
0.86 
0.81 
0.75 , 
1.57 
1.39 
1.40 
2.25 
1.58 
1.28 
1.18 
1.13 
1.98 
1.83 
1.62 
1.58 
2.03 
1.92 
1.74 
1.69 
1.90 
1.83 
1.87 
1.96 

l.12x 108 

0.92 
0.75 
0.70 
0.65 
1.36 
1.20 
1.21 
1.94 
1.36 
1.11 
1.02 
0.98 
1.71 
1.58 
1.40 
1.37 
1.75 
1.66 
1.51 
1.46 
1.64 
1.58 
1.61 
1.70 

TF >>300°K. These large values of BF (and TF) lead to Fermi veloci­
ties of the order of 108 cm/ sec, which is much faster than thermal 
velocities. These large numbers come about because of the quantiza­
tion of the free electron energy levels in the metal and because the 
Pauli principle restricts the number of electrons in each quantum state. 
Thus, the electrons fill much higher energy states than are required for 
a classical gas. 

The wave vector - Via Eq. 9-27, iii and the wave vector k are 
linearly related. Thus, just as in the case of iii-space, we may define 
k-space or wave vector space. k-space rather than iii-space will be used 
in Chapter 10 and Section 9-13. It is within k-space that the Fermi 
surface is defined. Remember iii or k are just orbital quantum numbers. 
We have already written the wave functions and energies in terms of k 
in Eq. 9-26, and Fig. 9-4 showed the allowed states in k-space. How-
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ever, a change in labels from kx and ky to 
9-4 appropriate to in space as well. Ther 
realize. First, k-space is uniformly fille, 
corresponds to an allowed (quantum) state 
sphere there are a huge number of allo 
density is very large. In a linear dimens 
lowed states is ~I cm- 1 (Eq. 9-27a). T 
on a scale that shows kF, the allowed s 
continuum of k-values. 

Fermi surface - The Fermi surface is t 
the occupied and unoccupied states in k-s 
is a surface of constant energy; in fact 
electrons the Fermi surface is a sphere (o 

as we shall see in Chapter 10, for real 
complicated shape. Although we define ti 
shall see that BF hardly is affected by tern 
temperatures the surface remains sharp a 
surface is very significant because it is o 
getically are close to it that can participa 
thermal excitations. These points are cov 
ter. For the more complicated Fermi surf 
10 these same general statements appl 
surfaces may vary but the physics is the sa 

Density of states, g(B) - This is defi 
between B and B + dB. To find g(B), no 
with energy up to arbitrary value of It is 

where we have used Eqs. 9-26 and 9-27 
quantity is just 

B 
Ia g(B) dB = 2( ~'IT )m3 = ( 

so g(B) = (2
112v /'IT 2)(m//J 

where the constant C, defined by this e 
later convenience. Figure 9-5 shows a plo 
(and for T > 0°K, which will be discuss 
form is clear. At T = 0°K the states ar 
The parabolic form for g(B) is not app· 
closely related to Fig. 9-5) because only 
energy occupied states are shown. 
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Table 9-6 Measured and calculated (via Eq. 9-53) values of y, the coefficient of the 

· free electron term in the molar specific heat. The values are given in 1 o-4 calories 

moles - 1°K- 2. (See Gopal for a more extensive list.) 

Element Meas. Cale. Element Meas. Cale. -- -Li 4.2 1.8 Fe 12 1.5 
Na 3.5 2.6 Mn 40 1.5 
K 4.7 4.0 Zn 1.4 1.8 
Rb 5.8 4.6 Cd 1.7 2.3 
Cs 7.7 5.3 Hg 5.0 2.4 
Cu 1.6 1.2 Al 3.0 2.2 
Ag 1.6 1.5 Ga 1.5 2.4 
Au 1.6 1.5 In 4.3 2.9 
Be 0.5 1.2 Tl 3.5 3.1 
Mg 3.2 2.4 Sn 4.4 3.3 
Ca 6.5 3.6 Pb 7.0 3.6 
Sr 8.7 4.3 Bi 0.2 4.3 • 
Ba 6.5 4.7 Sb 1.5 3.9 

where we have used g[8p(0)] = (3N/2)/8p(0) = (3N/2k 8 )/TF 
obtained from Eqs. 9-29 and 9-30b. The heat capacity per unit vol­
ume, CV = (au/ aT)v, is obtained directly from Eq. 9-52. However, 
the heat capacity per mole usually is measured. If we consider one 
mole of atoms and if each atom contributes Z electrons to the electron 
gas, then instead of k8 N in Eq. 9-52 where N is the number of elec­
trons, we write Zk8 N A = ZR where NA is the number of atoms in a 
mole, which is Avogadro's number and R is the gas constant. Then 
the electronic heat capacity per mole is 

(9-53) 

This is just the form expected as discussed qualitatively in Section 9-9. 
Instead of a value R, this is reduced to R(T /T F) because only the 
fraction (T/Tp) of the electrons, with energies near the Fermi energy, 
have empty states within a range k8 T to which they can be excited. 

Before we can compare the calculated electronic heat capacity to 
experimental values, the lattice heat capacity ( Chapter 11) must be 
mentioned. For N harmonicly coupled atoms, the classical energy is 
3Nk 8 T, since for each atom there is k8 T/2 for each degree of freedom 
and there are three degrees of freedom for the kinetic energy and also 
three for potential energy. Then Cv = 3Nk 8 , or 3R, for a mole. 
However, since the atoms in a crystal are not classic but quantum 
mechanical, at low temperatures their energy and heat capacity are 
sugnificantly different from the classical values. Low temperatures for 
a crystal lattice means temperatures low compared to the so called 
Debye temperature, which is typically several hundred degrees Kelvin. 
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