Magnetic Susceptibility

1. Recall from EEM, if you covered it Kesponse of a Linear Isotropic Homogeneous Medium to an applied magnetic field $M \equiv m$ agnetic moment /volume $units: (current. area) /volume = A / m$ \vec{H} = apportiel magnetic field (nurs in a nument) L THM: \overline{M} = X Then net magnetic field in $\vec{B} = \mu_0 (\vec{M} + \vec{H})$ (holed, this is the defeater of $\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$.) Various materials $X > 0$ paramagnetic dipoles tend to align with external field $X < 0$ diamagnetic dipoles (often easy to think of them as in duced) tend to align opposite the applied field X typically very small $\sim 10^{-5}$. F erromagnetic: X not constant. \overline{M} can be non-zero even in the absence of an applied field

what happens if you bring a paramagnetic sample close to a magnet ?
Crude picture : Sample is attracted to the magnet.
(nore details below-) $\left(\begin{matrix} \bullet \\ \bullet \end{matrix}\right)$ \mathcal{S} In our case, the sample of is tixed but tries to lift the magnet, so the measured mass of the magnet Look more coupelly: Force on a current loop (whose dipole monent a) in a uniform B field $\boldsymbol{\mathcal{Z}}$ Net $\vec{F} = 0$ in a uniform \vec{B} ,
(Tor que is not zero \rightarrow convent loop $tan\theta$ to align with $\vec{\theta}$.

b) current loop on a gradient Suppore B is not uniform in ^Z $I \rightarrow$ $B \odot$ $A \odot$ Δz \rightarrow $\Delta F = I L_{\alpha} B_{top} - I L_{\alpha} B_{tot}$ $\frac{1}{2}$ $\frac{1}{\gamma}$ $\frac{\Delta B}{\Delta}$ Recall magnetic dipole moment µ ^I Area $\Delta F = IL \times \Delta z \left(\frac{\Delta \beta}{\Delta z}\right) = \mu \frac{\Delta \beta}{\Delta z}$ Now think I magnetization M. Sample has a cross-sectional area $A = L_xL_y$ $\sqrt{2}$ $y^{\Delta z}$ $A^{\Delta z}$ μ = M Hs $\frac{S-BF = MAB}{M = XH}$ for that small loop. and $B = \mu_{\mathcal{O}}(M+H) = \mu_{\mathcal{O}}(1+X)H$ Then average value over small loop. ΔF = Δ H H μ , (1+ χ) Δ H

- 4 -Now, in tegrade are a tall sayple $\frac{1}{\frac{y}{2}}$ $F = \int dF = \chi A \mu_{0}(1 + \chi) \int H dV$ = $\chi A \mu_0 (1+\chi) \frac{1}{2} \mu^{2}$ Lastly measure 4 (by sticking a aurant With no sayele event, call it B
 $B = \mu_6 H \Rightarrow H = \frac{1}{\mu_8} B$ Then $F = \chi A \mu_0 (1 + \chi) \frac{1}{2} (\frac{B}{\mu_0})^2 / \frac{1}{2}$ $drop (2.15^{5})$ $F = \frac{\chi A}{\alpha \mu_{0}} (B_{top}^{2} - B_{bath}^{2})$

 $-5 S$ ample $\overline{\mathcal{B}_{\mathsf{top}}} \leftarrow \mathcal{B}_{\mathsf{top}} \times \mathcal{B}$ B_{bottom} large If $X = \rho o s$ itive (paramagnetic) the matrial is attracted into the region of
Strong field Equivalently, the magnets are pulled up F shows up as ^a change in mass recorded by the balance $F = \triangle m g$ $\frac{\Delta M}{2\mu_{o}}$ $\frac{\Delta H}{g}$ $\left(\frac{B_{top}}{g} - \frac{B_{set}}{g} \right)$ should be $= 0$ ⁱ Guoy balame Measure SM => learn Prediction X = Atomic or Solid State Physics. Requires quantum mechanics classically X ⁰ See Soction 2 of the Teach Spin manual