
Discrete Fourier Transform and Windowing
The Fourier transform assumes a periodic function over the range [0, T] in time (or [0, λ] in space).
What happens if the function is not actually periodic?

In[14]:= Clear["Global`*"]

Assume there is a periodic wave with period Tw, and you sample data by taking “npts” data points

with a sample interval of Δt, for a total sample time of ‘Tmax’. The Fourier transform assumes the

function is periodic with period Tmax. If Tmax == (integer*) Tw, then the assumed period matches the

actual period, and the Fourier transform works well. What happens if Tmax is not an integer number
of cycles of Tw?

a. Periodic Signal

First, construct a case where Tmax == 100 Tw.

In[15]:= Δt = 1.00; (* milliseconds *)

npts = 1024;
Tmax = npts * Δt;
Tw = Tmax / 100.0;

In[19]:= dataa = Table[Sin[2 π t / Tw], {t, 1, Tmax, Δt}] (* data from part (a) *);

Show the last 50 and first 50 points. Since it is a periodic function, the end of the function maps

smoothly onto the beginning.

In[25]:= GraphicsRow[{
ListPlot[Take[dataa, -50], Joined  True, Mesh  All,
LabelStyle  Larger, PlotStyle  PointSize[0.02], PlotLabel  "End"],

ListPlot[Take[dataa, 50], Joined  True, Mesh  All,
LabelStyle  Larger, PlotStyle  PointSize[0.02], PlotLabel  "Beginning"]

}, ImageSize  Scaled[0.8]]

Out[25]=

10 20 30 40 50

-1.0

-0.5

0.5

1.0
End

10 20 30 40 50

-1.0

-0.5

0.5

1.0
Beginning

Use the Fourier[] function to do the Fourier transform. Since the Fourier[] function returns the

element for frequency ‘0’ in slot ‘1’ of the array, we have to shift the frequencies all left by 1, and we

really only need the first few hundred in the array. There is a large peak at 100, corresponding to the

fact that the period of the signal is 1/100 of the length of the data sample.

In[48]:= fta = Abs[Fourier[dataa]];
ftaAmp = RotateLeft[fta, 1]〚Range[200]〛;
ListLogPlot[ftaAmp, PlotRange  All, Joined  True, Mesh  All,
LabelStyle  Larger, AxesLabel  {"mode", "Amplitude"}, ImageSize  Large]

Out[50]=

50 100 150 200
mode

10-13

10-8

0.001

Amplitude

b. Periodic Signal with a non-integer number of periods in the sampling

window.

Next, construct a case where Tmax == 100.5 Tw. Now the assumed periodicity of the Fourier analysis

does not match the actual periodicity of the underlying function.

In[27]:= Δt = 1.00; (* milliseconds *)

npts = 1024;
Tmax = npts * Δt;
Tw = Tmax / 100.5;

In[31]:= datab = Table[Sin[2 π t / Tw], {t, 1, Tmax, Δt}] (* data for part (b) *);

Since Tmax is not an integer number of periods, the end of one segment does not join smoothly onto

the beginning of the next.

2 Fourier-windowing.nb

In[32]:= GraphicsRow[{
ListPlot[Take[datab, -50], Joined  True, Mesh  All,
LabelStyle  Larger, PlotStyle  PointSize[0.02], PlotLabel  "End"],

ListPlot[Take[datab, 50], Joined  True, Mesh  All,
LabelStyle  Larger, PlotStyle  PointSize[0.02], PlotLabel  "Beginning"]

}, ImageSize  Scaled[0.8]]
Out[32]=

10 20 30 40 50

-1.0

-0.5

0.5

1.0
End

10 20 30 40 50

-1.0

-0.5

0.5

1.0
Beginning

In[51]:= ftb = Abs[Fourier[datab]];
ftbAmp = RotateLeft[ftb, 1]〚Range[200]〛;
ListLogPlot[ftbAmp, PlotRange  All, Joined  True, Mesh  All,
LabelStyle  Larger, AxesLabel  {"mode", "Amplitude"}, ImageSize  Scaled[0.8]]

Out[52]=

50 100 150 200
mode

0.05

0.10

0.50

1

5

10

Amplitude

There is clearly a much wider range of frequencies present. Note the amplitude on the vertical scale

as well. The amplitude is much higher away from the peak. (The peak height itself is about the same

-- the scale on the previous graph covers a much wider range. The dominant frequency is still around

100 (we expect 100.5), but the sharp transition between segments clearly has a wide range of frequen-
cies.

c. Windowing

When performing Fourier analysis on physical data, we usually can’t assume Tmax == (integer) Tw.
The instrument used to acquire the data sets Δt and the number of data points, and hence Tmax =

Fourier-windowing.nb 3

(npts) * Δt, while the underlying physical phenomenon being studied sets Tw. To avoid the artificial
discontinuity at Tmax, windowing is often applied. There are various approaches, but one of the

simplest is to multiply the signal by a very slowly varying envelope (or window) that goes to zero at
the end points. This introduces a fake very low frequency component, but smooths out the high

frequency glitch.

Here is the original data from part b. Note the discontinuity between the beginning and the end.

In[34]:= ListPlot[datab, Joined  True, AspectRatio  2 / 5,
LabelStyle  Larger, ImageSize  Scaled[0.8]]

Out[34]=

200 400 600 800 1000

-1.0

-0.5

0.5

1.0

This is a simple cosine-shaped window. It is zero at the endpoints but rises smoothly to 1 at the

center. (It is also sometimes known as a Hanning Window.)

In[35]:= win[x_, xmax_] := (1 - Cos[2 π x / xmax]) / 2
Plot[{win[x, 1024]}, {x, 1, 1024},
AspectRatio  2 / 5, LabelStyle  Larger, ImageSize  Scaled[0.8]]

Out[36]=

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Multiplying the data from part (b) by the window gives a new set of windowed data.

4 Fourier-windowing.nb

In[37]:= wdata = Table[datab〚x〛 * win[x, npts], {x, 1, npts}] (* Windowed data *);
wdplot = ListPlot[wdata, Joined  True,

AspectRatio  2 / 5, LabelStyle  Larger, ImageSize  Scaled[0.8]]
Out[38]=

200 400 600 800 1000

-1.0

-0.5

0.5

1.0

With the windowing, the end of the data maps smoothly onto the beginning, at the expense of intro-
ducing some very long wavelength (low frequency) Fourier components.

In[39]:= GraphicsRow[{
ListPlot[Take[wdata, -50], Joined  True, Mesh  All,
LabelStyle  Larger, PlotStyle  PointSize[0.02], PlotLabel  "End"],

ListPlot[Take[wdata, 50], Joined  True, Mesh  All,
LabelStyle  Larger, PlotStyle  PointSize[0.02], PlotLabel  "Beginning"]

}, LabelStyle  Larger, ImageSize  Scaled[0.8]]
Out[39]=

10 20 30 40 50

-0.02

-0.01

0.01

End

10 20 30 40 50

-0.02

-0.01

0.01

Beginning

Fourier-windowing.nb 5

In[45]:= ftw = Abs[Fourier[wdata]];
ftwAmp = RotateLeft[ftw, 1]〚Range[200]〛;
ListLogPlot[{ftbAmp, ftwAmp}, PlotRange  All, Joined  True,
Mesh  All, LabelStyle  Larger, AxesLabel  {"mode", "Amplitude"},
PlotLegends  {"Original (b)", "Windowed"}, ImageSize  Scaled[0.8]]

Out[47]=

50 100 150 200
mode

10-4

0.1

Amplitude

Original (b)

Windowed

Comparing just (b) and (b) with a window, the window has clearly helped identify the important
frequency in this data set.

Comparison of data from (a), (b), and windowed (b)

Clearly the smooth data in (a) has the sharpest transform. However, the windowed data does show a

slightly sharper peak, and has significantly suppressed the power at frequencies far from 100. (You

can also see from the graph that the new dominant mode is a bit more than 100. Of course we expect
that since we used Tmax/100.5 in part (b) compared to Tmax/100.0 in part (a).)

Any form of windowing involves tradeoffs, depending on the nature of the incoming signal and on the

type of analysis you wish to perform. Commercial signal analyzers typically offer several different
window shapes to optimize measuring different pieces of information (such as peak location, peak

width, peak height, and background noise level).

6 Fourier-windowing.nb

In[53]:= ListLogPlot[{ftaAmp, ftbAmp, ftwAmp}, Joined  True,
PlotRange  {{0, 200}, All}, PlotLegends  {"a", "b", "Windowed"},
LabelStyle  Larger, AxesLabel  {"mode", "Amplitude"}, ImageSize  Scaled[0.8]]

Out[53]=

50 100 150 200
mode

10-13

10-8

0.001

Amplitude

a

b

Windowed

Fourier-windowing.nb 7

