
Least Squares Fitting:
Physics 338

In Chapter 8 of An Introduction to Error Analysis, by John R. Taylor, the author discusses the general
theme of least-squares fitting. This is based on the normal distribution discussion in Chapter 5. Here,
we will take the theoretical background as given, and show how the minimization of the least square

difference leads to the standard results for some simple cases.

Computing the Mean
As a simple application, we will use the principle of least squares to calculate the mean of a set of
numbers.

First, we will make up a data set of random numbers. The following command creates a list of 5000

numbers selected from a normal distribution with a mean of 2.0 and a standard deviation of 0.1

In[58]:= rdata = RandomReal[NormalDistribution[2, 0.1], 5000];
npts = Length[rdata];
Histogram[rdata, ImageSize Large]

Out[60]=

1.7 1.8 1.9 2.0 2.1 2.2 2.3
0

100

200

300

400

Computing χ2

Next, we calculate χ2. For N data points with a mean value of X, (and assuming all have the same

uncertainty) the formula is

In[61]:= chisq1[data_, X_] :=
1

npts - 1

i=1

npts

(data〚i〛 - X)2

Of course, we don’t know X yet. The purpose of this exercise is to find the value of X which minimizes

χ2. We claim that value of X is our best estimate of the mean. Here is a plot showing χ2 for various

guesses of X.

In[62]:= Plotchisq1[rdata, X], {X, 1, 3},

AxesLabel "mean", "χ2", LabelStyle Larger, ImageSize Large

Out[62]=

1.5 2.0 2.5 3.0
mean

0.2

0.4

0.6

0.8

1.0

χ2

In[63]:= FindMinimum[chisq1[rdata, X], X]
Out[63]=

{0.00952305, {X 2.00308}}

This tells us the value of X that minimizes χ2, and also what that minimum value is.

In[64]:= Sqrt[%〚1〛] (* This will be the standard deviation *)

Out[64]=

0.0975861

Mean and Standard Deviation

The usual definition for the mean results from minimizing χ2, and that minimum value is the same as

the usual definition for the standard deviation.

2 linearfit.nb

In[65]:= Mean[rdata]
Out[65]=

2.00308

In[66]:= StandardDeviation[rdata]
Out[66]=

0.0975861

Fitting a Straight Line
First, here is some sample data of {current, mass} pairs from the magnetic susceptibility experiment.

Data

Typing the data directly:

The data is a list of data points. All lists are made of elements in curly braces { } separated by commas.
Each data point is itself a list, consisting of two numbers (in curly braces) separated by a comma. To

see what it looks like, display it with TableForm (or MatrixForm).

In[67]:= rawdata = {

{0.000, 181.184},
{0.497, 180.964},
{1.005, 180.736},
{1.507, 180.514},
{1.930, 180.326},
{0.000, 181.185},
{-0.504, 181.409},
{-1.008, 181.633},
{-1.502, 181.853},
{-1.930, 182.045},
{0.000, 181.184}

};

In[68]:= npts = Length[rawdata]
Out[68]=

11

Typing the data using the Classroom Assistant:

From the Palettes -> Classroom Assistant palette, look for the matrix item:

. (Depending on the

version of Mathematica, it might be in the “Typesetting” menu, or in the “Advanced” menu. (Use Ctrl-
Enter to add a new row.)

linearfit.nb 3

In[69]:= rawdata =

0 181.184
0.497 180.964
1.005 180.736
1.507 180.514
1.930 180.326
0 181.185

-0.504 181.409
-1.008 181.633
-1.502 181.853
-1.930 182.045

0 181.184

;

Reading from a file:

To read the data from a text file in the same directory as your notebook, first tell Mathematica what
directory to use, and then tell it This particular file consists of two columns (current, period). Read it
in as a “Table”. If you store your data in the same directory as the Mathematica notebook, then it is

probably simplest to just set the notebook directory as the default.

In[70]:= SetDirectory[NotebookDirectory[]]
Out[70]=

/Users/doughera/notes/www/public_html/courses/phys338-2024f/notes/curve-fit

Typically, files might have header information (names of columns, dates, etc.) Often they are delim-
ited by some sort of comment symbol. I often use ‘#’ for that purpose when I type the files in by hand.
Here is what my raw data file looks like:

In[71]:= FilePrint["mass_vs_current.txt"]

Mass reading (in g) vs Current (in Amps) for Magnetic Susceptibility
Experiment. January 26, 2018. -- A. Dougherty
Zero current obtained by pulling plug. Leads were reversed
for negative current. Zero was checked at the beginning, middle, and end.
Current (A) Mass (g)
 0.000 181.184
 0.497 180.964
 1.005 180.736
 1.507 180.514
 1.930 180.326
 0.000 181.185
-0.504 181.409
-1.008 181.633
-1.502 181.853
-1.930 182.045
 0.000 181.184

4 linearfit.nb

In[72]:= rawdata = Import["mass_vs_current.txt", "Table"]
Out[72]=

{{#, Mass, reading, (in, g), vs, Current, (in, Amps), for, Magnetic, Susceptibility},
{#, Experiment., January, 26,, 2018., --, A., Dougherty},
{#, Zero, current, obtained, by, pulling, plug., Leads, were, reversed}, {#, for,
negative, current., Zero, was, checked, at, the, beginning,, middle,, and, end.},

{#, Current, (A), Mass, (g)}, {0., 181.184}, {0.497, 180.964}, {1.005, 180.736},
{1.507, 180.514}, {1.93, 180.326}, {0., 181.185}, {-0.504, 181.409},
{-1.008, 181.633}, {-1.502, 181.853}, {-1.93, 182.045}, {0., 181.184}}

The default import includes all those comment lines. We want to select only those lines that contain

the actual data. The Selectp[comnmand is handy for this. In this specific case, we want only lines

where there are exactly two elements, and both of them are numeric. The following does that. The

first test, Length[#] == 2 checks that there are 2 elements. The second test checks that the element is

a vector (i.e. a list) that consists of only numeric items. You use ‘&&’ to mean logical “AND”. You

would use ‘||’ to mean logical OR. The ‘&’ at the end is needed to make Mathematica set the ‘#’ to

each individual item in the list.

In[73]:= data = Select[rawdata, Length[#] 2 && VectorQ[#, NumericQ] &]
Out[73]=

{{0., 181.184}, {0.497, 180.964}, {1.005, 180.736},
{1.507, 180.514}, {1.93, 180.326}, {0., 181.185}, {-0.504, 181.409},
{-1.008, 181.633}, {-1.502, 181.853}, {-1.93, 182.045}, {0., 181.184}}

Mathematica also can import CSV (comma-separated-values) files. More information is in the Import[
] function.

Plot the data.

Be sure to give your axes meaningful labels and make them large enough to be read. I have assigned

it to a variable for later reuse.

linearfit.nb 5

In[74]:= dataplot = ListPlot[data, AxesLabel {"Current (A)", "Mass (g)"},
LabelStyle Larger, ImageSize Large]

Out[74]=

-2 -1 1 2
Current (A)

180.5

181.0

181.5

182.0

Mass (g)

Theoretical Curve: A straight-line fit.

Here we explore how to find the best-fit straight line by the method of least squares. First, define the

target function. Use the unknown items (intercept, a0, and slope, a1) as parameters to the function.

In[75]:= yfit[x_, a0_, a1_] := a0 + a1 x

Calculating χ2

Define a χ2 function for the linear fit. For given a0 and a1 values, compute the average of the differ-
ences squared between the data and the fit value. Within the function, the data is in {i, m} pairs, so we

pull out the current of the ith valuewith data〚i, 1〛, and the mass of the ith valuewith data〚i, 2〛. You

can use the Classroom Assistant Palette to format the sum, or you can use Mathematica’s Sum[]
function directly. Use whichever is easier for you to read. The denominator has the ‘-2’ because with

N data points and 2 free parameters, there are only N-2 degrees of freedom.

In[76]:= calculateChisq[data_, a0_, a1_] :=

1

Length[data] - 2

i=1

Length[data]

(yfit[data〚i, 1〛, a0, a1] - data〚i, 2〛)2

In[77]:= calculateChisq[data_, a0_, a1_] :=

Sum(yfit[data〚i, 1〛, a0, a1] - data〚i, 2〛)2, {i, 1, Length[data]}

(Length[data] - 2)

6 linearfit.nb

Initial Explorations

This command builds an interactive window showing the data, the current fit, and the chi squared

value (as the plot title). It draws vertical lines from each data point to the fit line. Move the a0 and a1

sliders to minimize χ2. Mathematica’s “Filling” option gets confused if the data isn’t sorted, so let’s go

ahead and sort the data by the first entry in each line.

In[78]:= data = SortBy[data, First]
Out[78]=

{{-1.93, 182.045}, {-1.502, 181.853}, {-1.008, 181.633},
{-0.504, 181.409}, {0., 181.184}, {0., 181.184}, {0., 181.185},
{0.497, 180.964}, {1.005, 180.736}, {1.507, 180.514}, {1.93, 180.326}}

linearfit.nb 7

In[79]:= Manipulate[
fitted = Table[{data〚i, 1〛, yfit[data〚i, 1〛, a0, a1]}, {i, 1, Length[data]}];
Show[{ListPlot[{data, fitted },

Filling {1 {{2}, {Red, Black}}}, PlotLegends {"data", "fitted"}],
Plot[yfit[x, a0, a1], {x, -2, 2}]},

PlotLabel calculateChisq[data, a0, a1], ImageSize Large] ,
{{a0, 181.2}, 180.7, 181.7, 0.001, Appearance "Open"},
{{a1, 0}, -1.00, 1.00, 0.02, Appearance "Open"}

]

Out[79]=

a0

181.2

a1

0

-2 -1 1 2

180.5

181.0

181.5

182.0

0.319756

data

fitted

Minimizing χ2

Picking the intercept a0 = 181.2 (close to the expected value), look at how χ2 varieswith a1.

8 linearfit.nb

In[80]:= PlotcalculateChisq[data, 181.2, a1],

{a1, -1, 1 }, AxesLabel "a1", "χ2", LabelStyle Larger

Out[80]=

-1.0 -0.5 0.5 1.0
a1

0.5

1.0

1.5

2.0

2.5

3.0

3.5
χ2

Picking a1 = -0.4 (again, close to the expected value), look at how χ2 varieswith a0.

In[81]:= PlotcalculateChisq[data, a0, -0.4], {a0, 180, 182 },

AxesLabel "a0", "χ2", LabelStyle Larger

Out[81]=

180.5 181.0 181.5 182.0
a0

0.5

1.0

1.5

χ2

Ultimately, the “best” fit involves a two-dimensional minimization of χ2. Sometimes it helps to

visualize this sort of thing as a 3D plot or a density plot.

linearfit.nb 9

In[82]:= Plot3DcalculateChisq[data, a0, a1], {a0, 180.7, 181.7}, {a1, -1, 0},

AxesLabel "a0", "a1", "χ2", LabelStyle Larger, ImageSize Large

Out[82]=

10 linearfit.nb

In[83]:= DensityPlot[calculateChisq[data, a0, a1], {a0, 180.7, 181.7},
{a1, -1, 0}, LabelStyle Larger, ImageSize Large]

Out[83]=

Mathematica can find the minimum here as well.

In[84]:= result = FindMinimum[calculateChisq[data, a0, a1], {a0, a1}]
Out[84]=

5.27447×10-7, {181.185 181.185}

Finally, here is the best fit curve.

linearfit.nb 11

In[85]:= Show[{
dataplot,
Plot[yfit[x, a0, a1] /. result〚2〛, {x, -2, 2}, PlotStyle Red]

}]

Out[85]=

-2 -1 1 2
Current (A)

180.5

181.0

181.5

182.0

Mass (g)

Linear Model Fit
Mathematica can do this minimization automatically. The LinearModelFit[] function searches the

"parameter space" for the minimum value of χ2. It reports a "Confidence Interval" that reflects the

curvature of χ2 -- how much you can vary either parameter without making χ2 too large.

One other interesting thing to note: Note how our χ2 space has a "valley" (dark purple in the Density-
Plot) where you can explore what happens if you change a0 but don’t change a1, and vice-versa. This

is reflected in the LinearModelFit[] report. Look at the "Correlation Matrix." It tells you, in essence,
how well correlated each parameter is with the other. The 1's along the diagonal mean a0 is perfectly

correlated with a0 (obviously) and a1 is perfectly correlated with a1. The off-diagonal elements tell
you that a0 and a1 are mostly uncorrelated -- increasing one doesn’t really affect the other. This isn’t
always true for fits. Sometimes, a change in one parameter can be partially compensated for by a

change in another. In those cases, they are not completely independent parameters, and the Correla-
tion Matrix elements are further from zero.

In[86]:= fit = LinearModelFit[data, x, x]
Out[86]=

FittedModel 181. - 0.445 x

12 linearfit.nb

See the on-line help for more information on dealing with the results from LinearModelFit. Here are

some examples of things you can do with it.

In[87]:= fit["BestFit"]
Out[87]=

181.185 - 0.445241 x

In[88]:= fit["BestFitParameters"]
Out[88]=

{181.185, -0.445241}

In[89]:= fit["ParameterConfidenceIntervalTable"]
Out[89]=

Estimate Standard Error Confidence Interval

1 181.185 0.000218974 {181.184, 181.185 }

x -0.445241 0.000190698 {-0.445673 , -0.44481 }

In[90]:= fit["CorrelationMatrix"] // MatrixForm
Out[90]//MatrixForm=

1. 0.00039585

0.00039585 1.

In[91]:= Show[{ListPlot[data], Plot[fit[x] , {x, -2, 2},
PlotStyle Red, LabelStyle Larger]}, ImageSize Large]

Out[91]=

-2 -1 1 2

180.5

181.0

181.5

182.0

In[92]:= fit["EstimatedVariance"]
Out[92]=

5.27447 ×10-7

linearfit.nb 13

This is the same as our χ2 .

In[93]:= {a0, a1} = fit["BestFitParameters"]
Out[93]=

{181.185, -0.445241}

In[94]:= calculateChisq[data, a0, a1]
Out[94]=

5.27447 ×10-7

Interpreting the Uncertainties.

Mathematica gives you the uncertainties in the parameters, but you should also check whether the fit
is reasonable. In particular, do the differences between the data points and the fit make sense? Is the

size believable? Are there systematic trends?

Mathematica will report the “FitResiduals”, which are the differences between each data point and

the fitted curve. The average square of the residuals is called the “EstimatedVariance”. (Actually you

divide by N-2, since there are 2 degrees of freedom used up by the two fit parameters, a0 and a1.

In[95]:= fit["FitResiduals"]
Out[95]=

{0.00106825, -0.000368418, -0.000419155, -0.0000174771, -0.000615799,
-0.000615799, 0.000384201, 0.000669188, -0.00114817, 0.000363027, 0.000700149}

In[96]:= Total[fit["FitResiduals"]^2]/(Length[fit["FitResiduals"]] - 2)
Out[96]=

5.27447 ×10-7

In[97]:= fit["EstimatedVariance"]
Out[97]=

5.27447 ×10-7

The square root of the estimated variance is thus the RMS (root mean square) error -- the “typical”

amount by which the fitted line misses the data. It has the same units as the original y values, and

should be compared to the y uncertainties.

In[98]:= Sqrt[fit["EstimatedVariance"]]
Out[98]=

0.000726255

Are differences of 0.0007 grams meaningful? For this experiment, you can read the scale to 0.001 g,
and the zero current reading in this case varied between 181.183 and 181.184. Similarly, you probably

saw fluctuations on the order of 0.001g routinely as you did the experiment. Accordingly, a variance

of 0.0007 grams seems quite plausible.

14 linearfit.nb

Other Fit Properties.

This is a complete list of all available properties of the fit.

In[99]:= fit["Properties"]
Out[99]=

{AdjustedRSquared, AIC, AICc, ANOVA, BasisFunctions, BetaDifferences,
BestFit, BestFitParameters, BIC, CatcherMatrix, CoefficientOfVariation,
CookDistances, CorrelationMatrix, CovarianceMatrix, CovarianceRatios, Data,
Weights, DesignMatrix, DurbinWatsonD, Eigenstructure, EstimatedVariance,
FitDifferences, FitResiduals, Function, FVarianceRatios, HatDiagonal,
MeanPredictions, MeanPredictionBands, ParameterEstimates, PartialSumOfSquares,
PredictedResponse, Properties, Response, RSquared, SequentialSumOfSquares,
SingleDeletionVariances, SinglePredictions, SinglePredictionBands,
StandardizedResiduals, StudentizedResiduals, VarianceInflationFactors}

A note about the “Rsquared” value
In[100]:=

fit["RSquared"]
Out[100]=

0.999998

This is close to 1.0. Does that mean you have a good fit? Not necessarily. Consider the following

parabolic data set, where each point has a “random noise” added to each point (the noise has a mean

of 0 and a standard deviation of 1).

In[101]:=

RandomReal[NormalDistribution[0, 1]]
Out[101]=

0.265018

In[102]:=

parab = Table

x, 1.0 + 0.5 x + 0.3 x2 + RandomReal[NormalDistribution[0, 1]], {x, 1, 20, 2}

Out[102]=

{{1, 1.35556}, {3, 4.95557}, {5, 10.4837}, {7, 17.4556}, {9, 30.5001},
{11, 41.9389}, {13, 58.0746}, {15, 75.7125}, {17, 92.608}, {19, 118.617}}

Let’s try fitting it with a straight line

In[103]:=

pfit = LinearModelFit[parab, x, x]
Out[103]=

FittedModel -19.3 + 6.45 x

linearfit.nb 15

In[104]:=

pfit["ParameterConfidenceIntervalTable"]
Out[104]=

Estimate Standard Error Confidence Interval

1 -19.3256 6.15082 {-33.5094, -5.1418 }
x 6.44958 0.533343 {5.21968 , 7.67947 }

In[105]:=

Show[{ListPlot[parab],
Plot[pfit[x] , {x, 0, 20}, PlotStyle Red, LabelStyle Larger]}]

Out[105]=

5 10 15

20

40

60

80

100

120

In[106]:=

pfit["RSquared"]
Out[106]=

0.948131

This is still close to 1.0, even though we’re missing a systematic trend in the data. The R2 value does

not distinguish between data points that scatter about a line and those that deviate systematically

from the line. You need to look at the actual graph. Obviously, a parabola is the right fit here:

In[107]:=

Sqrt[pfit["EstimatedVariance"]]
Out[107]=

9.68867

A typical variance of 9.4 seems unreasonable given that our data should have noise on the order of 1.

In[108]:=

pfit2 = LinearModelFitparab, x, x2, x

Out[108]=

FittedModel 0.496 + 0.533 x + 0.296 x 2

16 linearfit.nb

In[109]:=

Show[{ListPlot[parab],
Plot[{pfit[x], pfit2[x]} , {x, 0, 20}, PlotLegends {"Linear", "Parabolic"}]}]

Out[109]=

5 10 15

20

40

60

80

100

120

Linear

Parabolic

In[110]:=

Sqrt[pfit2["EstimatedVariance"]]
Out[110]=

1.28291

A typical mismatch of roughly 1 between the data and the fit makes sense, given that we added noise

with a typical amplitude of about 1.

linearfit.nb 17

