20.6 Conductors and Electric Fields		
Conductor => charges can move Freely.		
+ + +		
E = 0		
+ +		
E = D inside a conductor		
Any excess charge lies on the surface Ē I surface		
E = T/E, adjacent to the surface (T= denerty)		
F & O largest near points		
largest Enew point.		
+ + + + -7		
+ + + + + + + + + + + + + + + + + + + +		
Shielding / Faraday cage		
Consider a +++++++++++++++++++++++++++++++++++		
conductor with E=0 *		
excess charge. + cavity +		
t Conducton + +		

20.7 Forces and Torques in Elec	ctric Fields
·	
Forces: Use	F=ma, where F=gE
for a charge of	in an electric field E.

Example: Use parallel plates to stop and elect non: an electron has an initial speed of 3.00 × 10 m/s, what magnitude and direction of electric field would be needed to bring it to rost in 0.0500 m?

Charge one plats +Q the other -Q.

Poll: what orientation of charges do we need?

