
Ch. 30 Part 3
Nuclear Decay and Half-Lives
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30.5: Nuclear Decay and Half-Lives

Suppose you have a sample containing N unstable radioactive nuclei. In a short time
interval ∆t, some number ∆N will decay. Define the activity R by

R = ∆N
∆t = Number of decays per second.

Observationally, R is proportional to N. That is, on average, a specific fraction of the
nuclei present decay in each time interval. Numerically,

R = N
τ

where τ is called the “lifetime.” It is different for different nuclei, and ranges from
fractions of a second to billions of years.
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30.5: Nuclear Decay and Half-Lives

Mathematically, this leads to
dN
dt = N

τ

N = N0e−t/τ

R = R0e−t/τ

where N0 is the number of nuclei at time t = 0, and R0 is the activity at time 0.

Units:

1 Becquerel = 1 decay/s = 1Bq
1Curie = 3.7× 1010 decays/s = 1Ci

1 µCurie = 10× 10−6 Ci = 3.7× 104 decays/s = 1 µCi
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30.5: Half-Lives

Another approach: Given an initial number of nuclei N0, how long do you have to wait
until only half are left? Call that the half-life, t1/2. An alternate way to write the
exponential decay is

N(t) = N0

(1
2

)t/t1/2

This is the method the text uses in section 30.5 to introduce decay. The half-life and
lifetime are related by

t1/2 = (ln 2)τ = 0.693 τ

It is important to recognize that the halflife does not depend on the original number,
and that the activity R(t) follows the same rule as the number N(t). So, for example,
the time it takes the activity to go from 100Bq to 50Bq is the same time it takes to
go from 50Bq to 25Bq, or 40Bq to 20Bq, or any R to 1

2R.
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Carbon-14 Half-life

14C is unstable, and decays via beta decay:

14
6C → 14

7N + e− + ν̄e

The half-life is approximately t1/2 = 5730 yr, corresponding to a lifetime of
τ = 8270 yr. Suppose you intially had m0 = 1.00× 10−10 g of 14C.

• How many nuclei is that?

N0 = (1.00× 10−10 g)× 6.022× 1023 atoms
1mole × 1mole

14 g
N0 = 4.301× 1012 nuclei
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Carbon-14 Half-life

14C is unstable, and decays via beta decay:

14
6C → 14

7N + e− + ν̄e

The half-life is approximately t1/2 = 5730 yr, corresponding to a lifetime of
τ = 8270 yr. Suppose you intially had m0 = 1.00× 10−10 g of 14C.

• What is the initial activity?

R0 = N0
τ

= 4.30× 1012

8270 yr × 1 yr
3.1536× 107 s = 16.5Bq

(Note we had to convert from years to seconds to get Bq.)
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Carbon-14 Half-life

14C is unstable, and decays via beta decay:
14
6C → 14

7N + e− + ν̄e

The half-life is approximately t1/2 = 5730 yr, corresponding to a lifetime of
τ = 8270 yr. Suppose you intially had m0 = 1.00× 10−10 g of 14C.

• What is the activity after 5730 yr?

R = R0

(1
2

)t/t1/2

R = 16.5Bq×
(1
2

)5730/5730
= 8.25Bq
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Carbon-14 Half-life

14C is unstable, and decays via beta decay:
14
6C → 14

7N + e− + ν̄e

The half-life is approximately t1/2 = 5730 yr, corresponding to a lifetime of
τ = 8270 yr. Suppose you intially had m0 = 1.00× 10−10 g of 14C.

• What is the activity after t = 2t1/2 = 11 460 yr?

R = R0

(1
2

)t/t1/2

R = 16.5Bq×
(1
2

)11460/5730
= 4.12Bq
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Carbon-14 Half-life

14C is unstable, and decays via beta decay:
14
6C → 14

7N + e− + ν̄e

The half-life is approximately t1/2 = 5730 yr, corresponding to a lifetime of
τ = 8270 yr. Suppose you intially had m0 = 1.00× 10−10 g of 14C.

• What is the activity after t = 3t1/2 = 17 190 yr?

R = R0

(1
2

)t/t1/2

R = 16.5Bq×
(1
2

)17190/5730
= 2.06Bq
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Carbon-14 Half-life

• How long do you have to wait until the expected activity is 1 decay/s? Here it is
probably simpler to use the exponential form rather than the half-life form. We
are looking for the time t when R = 1.

R = R0e−t/τ

1 = R0e−t/τ Multiply both sides by et/τ

et/τ = R0 Take natural logs of both sides
t
τ

= ln R0

t = τ ln R0 = (8270 yr)× ln(16.49) = 23 180 yr
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30.6 Medical Applications of Nuclear Physics

The interaction of nuclear particles with matter is complicated. This section introduces
a number of new terms and definitions. These are important in the field, but will not
be on the final exam.
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What’s Next?

• Examples and Applications

• Final Review
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