
3. (20 pts.) A 3kg object is subject to two forces, $\vec{F}_1 = 4$ N at 30° and $\vec{F}_2 = 7$ N at 75°, where all angles are measured from the x axis. The object is at rest at the origin at time t = 0s. Where is the object at t = 5s?

3. (20 pts.) A 3kg object is subject to two forces, $\vec{F}_1 = 4$ N at 30° and $\vec{F}_2 = 7$ N at 75°, where all angles are measured from the x axis. The object is at rest at the origin at time t = 0s. Where is the object at t = 5s?

bruck in to components.

Find a_{x} , a_{y} , get x, y.

X-components: $\Sigma E_{x} = ma_{x}$ $F_{1} \omega_{2} 30^{\circ} + F_{2} \omega_{2} 75^{\circ} = (3) G_{x}$ $4 \omega_{1} 30 + 7 \omega_{2} 75 = 3 a_{x}$ $Q_{x} = 1.76 m/p^{2}$ $y - components \quad \Sigma F_{y} = ma_{y}$ $F_{1} \sin 30^{\circ} + F_{2} \sin 75^{\circ} = 3 a_{y}$ $2.92 m/p^{2} = a_{y}$

Now, for t = 50 $X = N_0 + N_{0x}t + \frac{1}{2}q_{x}t^{2}$ $X = 0 + 0 + \frac{1}{2}(a_{1}.7a_{0})(5)^{2} = 32m$ $Y = Y_0 + N_{0y}t + \frac{1}{2}q_{y}t^{2}$ $Y = 0 + 0 + \frac{1}{2}(2.92)(5)^{2} = 36.5m$