
Sidebranch Development
in Free Dendritic Growth

Andrew Dougherty
Ian Crawley (’15) and Greg deLaski (’14)

Department of Physics
Lafayette College

APS March 2014



Typical Crystal

NH4Cl crystal in aqueous solution The image is 400 µm across.
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I Growth cell: 40× 10× 2 mm3

I Horizontal growth to minimize convection
I Obtain an approximately spherical seed
I Lower temperature ∆T ≈ 1◦C to initiate growth



Theory — I

Diffusion Limited Crystal Growth
u = Dimensionless concentration

∂u
∂t

= D∇2u

uinterface = −d0κ

u∞ = −∆

vn = −D∇u · n̂

d0 = capillary length
κ = curvature
∆ = supersaturation



Theory — II

I Two Characteristic Length Scales:

I L = difusion length =
2D
v

(∼ mm)
I d0 = capillary length (∼ nm)
I Typical scale of pattern is

√
Ld0 (∼ µm)

I General Features:
I Flat interface is unstable
I Surface tension limits curvature
I Nonlinear growth and competition leads to structures on a

wide range of scales.



Growth from a Nearly Spherical Seed



Ordinary Dendritic Growth



Theory — III

Modeling Dendritic Growth — Approximately parabolic tip
I tip speed v

I tip radius of curvature ρ =
1√
σ?

√
Ld0

I where the “stability constant” σ? =
2d0D
vρ2

I initial sidebranch spacing λ ∼ 4ρ



Modeling the Dendrite Tip

I First, model the tip, then look for sidebranches as
deviations from the initially smooth tip.

I Approximate tip as a parabola

z =
x2

2ρ

I . . . plus a small fourth-order correction

z =
x2

2ρ
+ A4

x4

ρ3

where A4 ≈ −0.0036.
I Or as a power law

x =
z
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Fitting the Tip

Tip with border points.



Fitting the Tip

Tip with parabolic fit.



Fitting the Tip

Tip with parabolic fit with fourth-order correction.



Fitting the Tip

Tip with parabolic fit, fit with fourth-order correction, and power law.



Fitting the Tip
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To determine the tip radius ρ, only use data close to the tip, where
contamination from the sidebranches is not significant.



Fitting the Tip
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The tip shape is not simple. Near the tip, the fit with the fourth-order
correction is the most robust, but it fails for larger distances.



Sidebranch Growth

Return to full set of border points.



I Rotate to make growth horizontal
I Translate all tips to the origin
I Rescale all distances by ρ
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Propagating Sidebranch Waves



Analyze width time series
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Sample w(z, t) at various fixed z.



Analyze width time series
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Autocorrelation
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Correlations fall off fairly quickly, particularly for the larger branches



Correlations

I Do see some “bursts” of sidebranches

I Typical length ∼ 8 branches
I Correlations die off quickly—even within a burst, branches

aren’t strictly periodic
I Correlations drop off more rapidly for large branches,

where competition is more significant
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Unusual Strongly Periodic Sidebranch Growth

Occasionally, we will see very regular branches. This appears
to be an interaction with the cell floor boundary.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur
I . . . but even they are weakly correlated.
I Both sidebranch amplitude and timing suggest that even if

there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur
I . . . but even they are weakly correlated.
I Both sidebranch amplitude and timing suggest that even if

there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur
I . . . but even they are weakly correlated.
I Both sidebranch amplitude and timing suggest that even if

there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur
I . . . but even they are weakly correlated.
I Both sidebranch amplitude and timing suggest that even if

there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur

I . . . but even they are weakly correlated.
I Both sidebranch amplitude and timing suggest that even if

there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur
I . . . but even they are weakly correlated.

I Both sidebranch amplitude and timing suggest that even if
there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.



Summary

I Steady state growth has approximately constant tip size
and speed

I with somewhat regular, but noisy, sidebranches initially
emerging

I Measurements of tip size and speed are contaminated by
earliest sidebranches

I Measurements of early sidebranches are affected by tip
size and shape measurements.

I Bursts of sidebranches do occur
I . . . but even they are weakly correlated.
I Both sidebranch amplitude and timing suggest that even if

there is a weak underlying oscillatory driving, noise plays a
central role even in the earliest stages.







Finding the Sidebranch Envelope

Identify the active sidebranches.



Finding the Sidebranch Envelope

Identify the active sidebranches and compute the average sidebranch
envelope.



Finding Sidebranches
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Sidebranch Amplitude

I One prediction for the sidebranching amplitude is

A(z) = S0 exp

(
2
3

(
w3

ave(z)

3σ∗zρ2

)1/2)

where z is the distance back from the tip, ρ is the tip radius,
wave(z) is the average shape of the dendrite, and

σ∗ =
2d0D
vρ2

I The noise amplitude S0 is given by

S2
0 =

2CLeqD
(∆Ceq)2ρ3v

≈ 6× 10−5
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Sidebranch Amplitude

I Generically, if wave(z) scales as a power law with z, the
amplitude of the sidebranches is predicted to scale

A(z) = S0 exp
(z

s

)α

I where α is predicted to be 0.4 if wave ∼ z3/5,
I or 0.5, based on the wave fit found above.
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Sidebranch Amplitude

Define sidebranch amplitude as rms variation around the average
shape.



Sidebranch Amplitude
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I The fit is poorly constrained.

I S0 = 0.0023± 0.0015, α = 0.37± 0.04, s = 0.40± 0.33.
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Sidebranch Amplitude
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I Key uncertainty is at very small amplitudes that are difficult
to resolve well.

I Noise level is higher than expected from thermal noise.



Sidebranch Amplitude
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Sidebranch Amplitude
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Determination of initial sidebranch amplitudes depends critically on
shape assumed for average underlying shape.



Amplitude of Individual Sidebranches

I Model scaled dendrite width by

w(z) = w̄(z) + S0 exp
(z

s

)α
sin
(

2π
λ

z + φ

)
λ is sidebranch wavelength.



Amplitude of Individual Sidebranches
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Shape is consistent with large “noise” value S0.



Amplitude of Individual Sidebranches
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Forcing S0 to a smaller value closer to the theoretical expectation
does not yield as good a fit.



Summary

I No simple scaling law describes
I the tip shape
I average crystal width
I sidebranch envelope
I sidebranch amplitude

I Instead, seem to see continual transition from
⇒ smooth tip
⇒ initial branches
⇒ competing branches
⇒ independently growing new dendrites
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