Sidebranch Development in Free Dendritic Growth

Andrew Dougherty Ian Crawley ('15) and Greg deLaski ('14)

> Department of Physics Lafayette College

APS March 2014

Typical Crystal

NH₄Cl crystal in aqueous solution The image is 400 μ m across.

<ロ> <問> <問> < 回> < 回> < □> < □> <

ъ

Apparatus

- Growth cell: $40 \times 10 \times 2 \text{ mm}^3$
- Horizontal growth to minimize convection
- Obtain an approximately spherical seed
- Lower temperature $\Delta T \approx 1^{\circ}$ C to initiate growth

Theory — I

Diffusion Limited Crystal Growth

u = Dimensionless concentration

$$\begin{array}{rcl} \displaystyle \frac{\partial u}{\partial t} &=& D\nabla^2 u\\ u_{interface} &=& -d_0 \kappa\\ \displaystyle u_{\infty} &=& -\Delta\\ \displaystyle v_n &=& -D\nabla u \cdot \hat{n} \end{array}$$

 d_0 = capillary length κ = curvature Δ = supersaturation

Theory — II

Two Characteristic Length Scales:

- $L = \text{difusion length} = \frac{2D}{V} (\sim \text{mm})$
- $d_0 = \text{capillary length } (\sim nm)$
- Typical scale of pattern is $\sqrt{Ld_0}$ (~ μ m)
- General Features:
 - Flat interface is unstable
 - Surface tension limits curvature
 - Nonlinear growth and competition leads to structures on a wide range of scales.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Growth from a Nearly Spherical Seed

LAFAYETTE PHYSICS

Ordinary Dendritic Growth

Theory — III

Modeling Dendritic Growth — Approximately parabolic tip

(日) (日) (日) (日) (日) (日) (日)

- tip speed v
- tip radius of curvature $\rho = \frac{1}{\sqrt{\sigma^*}} \sqrt{Ld_0}$
- where the "stability constant" $\sigma^{\star} = \frac{2d_0D}{V\rho^2}$
- initial sidebranch spacing $\lambda \sim 4\rho$

Modeling the Dendrite Tip

- First, model the tip, then look for sidebranches as deviations from the initially smooth tip.
- Approximate tip as a parabola

$$z = \frac{x^2}{2\rho}$$

Modeling the Dendrite Tip

- First, model the tip, then look for sidebranches as deviations from the initially smooth tip.
- Approximate tip as a parabola

$$z=\frac{x^2}{2\rho}$$

... plus a small fourth-order correction

$$z=\frac{x^2}{2\rho}+A_4\frac{x^4}{\rho^3}$$

where $A_4 \approx -0.0036$.

Modeling the Dendrite Tip

- First, model the tip, then look for sidebranches as deviations from the initially smooth tip.
- Approximate tip as a parabola

$$z=\frac{x^2}{2\rho}$$

... plus a small fourth-order correction

$$z=\frac{x^2}{2\rho}+A_4\frac{x^4}{\rho^3}$$

where $A_4 \approx -0.0036$.

Or as a power law

$$x = \frac{z^{\frac{5}{3}}}{(2\rho)^{\frac{2}{3}}}$$

Tip with border points.

э

ヘロン 人間 とくほど くほどう

Tip with parabolic fit.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tip with parabolic fit with fourth-order correction.

・ロン ・四 ・ ・ ヨン ・ ヨン …

э

Tip with parabolic fit, fit with fourth-order correction, and power law.

◆□→ ◆圖→ ◆直→ ◆直→

To determine the tip radius ρ , only use data close to the tip, where contamination from the sidebranches is not significant.

The tip shape is not simple. Near the tip, the fit with the fourth-order correction is the most robust, but it fails for larger distances.

Sidebranch Growth

Return to full set of border points.

э

・ロン ・雪と ・目と

- Rotate to make growth horizontal
- Translate all tips to the origin
- Rescale all distances by ρ

Scaled Dendrite Width w(z)

Rotated, translated, and scaled dendrite width w(z).

Propagating Sidebranch Waves

LAFAYETTE PHYSICS

э

<ロ> <同> <同> <同> <同> <同>

Analyze width time series

LAFAYETTE PHYSICS

< ロ > < 同 > < 回 > < 回 >

c070702

Analyze width time series

Autocorrelation

Correlations fall off fairly quickly, particularly for the larger branches

LAFAYETTE PHYSICS

(日)

Do see some "bursts" of sidebranches

- Do see some "bursts" of sidebranches
- Typical length \sim 8 branches

- Do see some "bursts" of sidebranches
- Typical length \sim 8 branches
- Correlations die off quickly—even within a burst, branches aren't strictly periodic

- Do see some "bursts" of sidebranches
- Typical length \sim 8 branches
- Correlations die off quickly—even within a burst, branches aren't strictly periodic
- Correlations drop off more rapidly for large branches, where competition is more significant

Unusual Strongly Periodic Sidebranch Growth

Occasionally, we will see very regular branches. This appears to be an interaction with the cell floor boundary.

> うびん market m Arket market m

 Steady state growth has approximately constant tip size and speed

- Steady state growth has approximately constant tip size and speed
- with somewhat regular, but noisy, sidebranches initially emerging

- Steady state growth has approximately constant tip size and speed
- with somewhat regular, but noisy, sidebranches initially emerging
- Measurements of tip size and speed are contaminated by earliest sidebranches

- Steady state growth has approximately constant tip size and speed
- with somewhat regular, but noisy, sidebranches initially emerging
- Measurements of tip size and speed are contaminated by earliest sidebranches
- Measurements of early sidebranches are affected by tip size and shape measurements.

- Steady state growth has approximately constant tip size and speed
- with somewhat regular, but noisy, sidebranches initially emerging
- Measurements of tip size and speed are contaminated by earliest sidebranches
- Measurements of early sidebranches are affected by tip size and shape measurements.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Bursts of sidebranches do occur

- Steady state growth has approximately constant tip size and speed
- with somewhat regular, but noisy, sidebranches initially emerging
- Measurements of tip size and speed are contaminated by earliest sidebranches
- Measurements of early sidebranches are affected by tip size and shape measurements.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Bursts of sidebranches do occur
- ... but even they are weakly correlated.

- Steady state growth has approximately constant tip size and speed
- with somewhat regular, but noisy, sidebranches initially emerging
- Measurements of tip size and speed are contaminated by earliest sidebranches
- Measurements of early sidebranches are affected by tip size and shape measurements.
- Bursts of sidebranches do occur
- ... but even they are weakly correlated.
- Both sidebranch amplitude and timing suggest that even if there is a weak underlying oscillatory driving, noise plays a central role even in the earliest stages.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding the Sidebranch Envelope

Identify the active sidebranches.

・ロト ・ 四ト ・ ヨト ・ ヨト

Finding the Sidebranch Envelope

Identify the active sidebranches and compute the average sidebrancher envelope.

Finding Sidebranches

One prediction for the sidebranching amplitude is

$$A(z) = S_0 \exp\left(\frac{2}{3} \left(\frac{w_{ave}^3(z)}{3\sigma^* z \rho^2}\right)^{1/2}\right)$$

where *z* is the distance back from the tip, ρ is the tip radius, $w_{ave}(z)$ is the average shape of the dendrite, and

$$\sigma^* = \frac{2d_0D}{v\rho^2}$$

One prediction for the sidebranching amplitude is

$$A(z) = S_0 \exp\left(\frac{2}{3} \left(\frac{w_{ave}^3(z)}{3\sigma^* z \rho^2}\right)^{1/2}\right)$$

where *z* is the distance back from the tip, ρ is the tip radius, $w_{ave}(z)$ is the average shape of the dendrite, and

$$\sigma^* = \frac{2d_0D}{v\rho^2}$$

The noise amplitude S₀ is given by

$$S_0^2 = rac{2 C L^{eq} D}{(\Delta C^{eq})^2
ho^3 v} pprox 6 imes 10^{-5}$$

Generically, if w_{ave}(z) scales as a power law with z, the amplitude of the sidebranches is predicted to scale

$$A(z) = S_0 \exp\left(\frac{z}{s}\right)^c$$

Generically, if w_{ave}(z) scales as a power law with z, the amplitude of the sidebranches is predicted to scale

$$A(z) = S_0 \exp\left(\frac{z}{s}\right)^{\alpha}$$

• where α is predicted to be 0.4 if $w_{ave} \sim z^{3/5}$,

Generically, if w_{ave}(z) scales as a power law with z, the amplitude of the sidebranches is predicted to scale

$$A(z) = S_0 \exp\left(\frac{z}{s}\right)^{\alpha}$$

- where α is predicted to be 0.4 if $w_{ave} \sim z^{3/5}$,
- ▶ or 0.5, based on the *w*_{ave} fit found above.

Define sidebranch amplitude as rms variation around the average shape.

LAFAYETTE PHYSICS

<ロ> (四) (四) (日) (日) (日)

The fit is poorly constrained.

The fit is poorly constrained.

► $S_0 = 0.0023 \pm 0.0015$, $\alpha = 0.37 \pm 0.04$, $s = 0.40 \pm 0.33$.

LAFAYETTE PHYSICS

 Key uncertainty is at very small amplitudes that are difficult to resolve well.

- Key uncertainty is at very small amplitudes that are difficult to resolve well.
- Noise level is higher than expected from thermal noise.

LAFAYETTE PHYSICS

< ロ > < 同 > < 回 > < 回 >

Determination of initial sidebranch amplitudes depends critically on shape assumed for average underlying shape.

Amplitude of Individual Sidebranches

Model scaled dendrite width by

$$w(z) = \bar{w}(z) + S_0 \exp\left(\frac{z}{s}\right)^{lpha} \sin\left(\frac{2\pi}{\lambda}z + \phi\right)$$

 λ is sidebranch wavelength.

Amplitude of Individual Sidebranches

うびい 川 ふかく 川マ ふしゃ

LAFAYETTE PHYSICS

Amplitude of Individual Sidebranches

Forcing S_0 to a smaller value closer to the theoretical expectation does not yield as good a fit.

(日)

No simple scaling law describes

- the tip shape
- average crystal width
- sidebranch envelope
- sidebranch amplitude
- Instead, seem to see continual transition from
 - \Rightarrow smooth tip
 - ⇒ initial branches
 - \Rightarrow competing branches
 - \Rightarrow independently growing new dendrites