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Abstract

Dendritic crystal growth is an important example of
nonequilibrium pattern formation that involves both nonlinear
and noise-driven effects. Testing theoretical models requires
careful measurements of the relevant materials parameters. For
the growth of ammonium chloride crystals from aqueous solution,
previous published estimates of the capillary length have varied
by over a factor of 20. We report a new technique for measuring
the capillary length for non-faceted materials.

For sidebranches, we find that no simple power law describes
either the average sidebranch amplitude or the average
sidebranch envelope. Instead, the effective power law exponent
appears to increase as a function of distance from the dendritic
tip. The branch amplitude is also larger than predicted by simple
models of noise-driven sidebranching.

Introduction

Dendritic crystal growth is commonly observed in the
growth of non-faceted materials from a pure melt or
supersaturated solution. The crystals are
characterized by a smooth, nearly parabolic tip, with
sidebranches emerging a short distance behind the tip.
Much of the beauty of complex crystal structures
results from the intricate development and subsequent
competition of these sidebranches. For general
reviews, see [1] and [2].

Figure 1: Dendritic crystal of NH4Cl growing from aqueous solution.
The image is approximately 400µm across.

Considerable experimental and theoretical effort has
focused on measuring the properties of the sidebranch
structure, understanding the origin of the
sidebranches, and looking for scaling laws that might
govern their ultimate development. Previous extensive
studies of sidebranch structure have been reported for
succinonitrile [3, 4, 5], ammonium bromide [6, 7],
Xenon [8], ammonium chloride [9], and succinonitrile
and succinonitrile/acetone alloys [10].

Theory

The basic theory for steady state diffusion-limited
dendritic crystal growth is presented in [11]. For
growth from solution, the growth is limited by the
diffusion of impurities. The driving is typically
expressed in terms of a dimensionless supersaturation,
∆. In this experiment, the typical temperature
variations are less than ±0.02◦C, so we adopt a simple
linear model for ∆, namely

∆ = cT(Teq − T )

where Teq is the temperature at which a flat interface
would be in equilibrium, and cT is to be determined
empirically.

Theory for a Spherical Crystal

The theory for diffusion-limited growth of an isotropic
spherical crystal in an isothermal solution is developed
in Ref. [11]. The central result used here is that the
radial growth velocity, dR/dt, is given by

dR

dt
=

D

R

(
∆ − 2d0

R

)
(1)

where R is the radius of the crystal, D is the diffusion
coefficient for NH4Cl in aqueous solution, d0 is the
capillary length, and ∆ is the dimensionless
supersaturation.

Experiment

An aqueous solution of ammonium chloride was
placed in a glass cell mounted in a massive copper
block, surrounded by an outer aluminum block, and

Figure 2: Spherical crystal
of NH4Cl held in unstable
equilibrium. The radius is
26µm.

placed on a microscope
enclosed in a temperature-
controlled insulating box.
The temperature of the
system was then oscillated
to cause the crystal to grow
and dissolve. Fits to Eq. 1
were used to determine the
product Dd0 and cT .

Results: Growth of a Spherical Crystal
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Figure 3: Radius vs. time for a spherical crystal subject to an
oscillating temperature (shown in purple). The solid curve is a fit to
Eq. 1. At the end of the run, the crystal was dissolving rapidly and
eventually completely dissolved.

Fits to Eq. 1 do not give independent measures of D
and d0; instead we find that the product

Dd0 = 0.58 ± 0.04µm3/s.

Using a typical estimate [12, 13] of D = 2500µm2/s,
we estimate d0 = 0.23 ± 0.02 nm. This value is
between the values of 0.065 nm in Ref. [12] and
1.59 nm in Ref. [13].

Theory for Dendritic Growth

A growing dendrite is characterized by a smooth,
nearly parabolic tip of radius ρ growing at constant
speed v . The tip radius and velocity are related to the
“stability constant” σ? by

σ? =
2d0D

vρ2
, (2)

A short distance behind the tip, sidebranches emerge
with a characteristic wavelength λ that is typically
∼ 3ρ. These sidebranches start out approximately
uniform, but compete in a complex nonlinear
coarsening process [3, 6].

Results: Sidebranches
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Figure 4: Width of a dendrite as a function of distance away from the
tip. All distances are scaled by the tip radius ρ. Shown for
comparison are the average width for all images from the same run,
as well as a power-law fit to that average.

The average width is shown in Fig. 4 along with a
power-law fit with exponent 0.658 ± 0.002. For
reference, the width from one single image is also
included. A log-log version is shown in Fig. 5; it is
clear that the width is not well-described by a single
power law. Instead, there is a gradual transition from
a power law of roughly 1

2 close to the tip to a much
larger value further away. Sufficiently far back from
the tip, the largest branches grow as independent
dendrites, so the slope will approach 1.
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Figure 5: A log-log plot of dendrite width, along with a power-law fit.

Discussion

No single power-law adequately describes the
development of dendritic sidebranches. The results
above are for the averge crystal width, but similar
results hold for other measures, including the RMS
sidebranch amplitude and the envelope of active
sidebranches.
One remaining question is the extent to which these
intricate sidebranching patterns reflect intrinsic
oscillatory instabilities versus forcing due to external
noise. Our preliminary assessment is that the
sidebranches are generally larger than would be
anticipated solely due to thermal noise.
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