
FREEZING OF METHANOL-WATER MIXTURES AT HIGH PRESSURE IN A SUBSURFACE OCEAN
A. Dougherty, R. Chumsky, and D. Morris, Department of Physics, Lafayette College, Easton, PA 18042 USA.
doughera@lafayette.edu

Introduction: Enceladus is a surprisingly active
world. The observations of water-rich plumes [1, 2, 3,
4, 5] reveal either the presence of a liquid reservoir or
highly active melting. The composition of the plumes
suggests a liquid reservoir [5, 6], and the measured li-
bration is consistent with a global subsurface ocean,
rather than a localized reservoir [7].

Any subsurface ocean would likely contain impurities,
such as ammonia[8] and methanol, that act as powerful
antifreeze compounds. Small amounts of methanol may
have been detected on the surface of Enceladus [9], as
well as in the plume [3]. In addition to being a pow-
erful antifreeze, methanol could also play a role in the
formation of methane hydrates [10].

Experiment: In this work, we consider the freezing
behavior of methanol-water solutions at low tempera-
tures and moderate pressures such as might be encoun-
tered in the icy moons of the outer solar system. We
report measurements of the liquidus and eutectic points
for 30 wt.% and 80 wt.% methanol-water solution at
pressures ranging from 5 to 400 MPa, using simulta-
neous measurements of pressure, volume, and tempera-
ture, coupled with optical images of the sample.

The phase diagram for methanol-water solutions at at-
mospheric pressure is shown in Fig. 1.
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Figure 1: Atmospheric pressure phase diagram for methanol-
water solutions, adapted from Kargel [11]. Data are from Vuil-
lard & Sanchez [12] and Miller & Carpenter [13].

Approximately 1 mL of sample was loaded into a
pressure cell made from a stainless steel block with four
ports. Two opposing ports contain plugs that have sap-
phire windows for the imaging system. The third port
contains a plug with a silicon diode thermometer, and
the fourth connects the cell to the pressure system. A
fiber optic light illuminates the sample, and an inverted
periscope is used to obtain images. The pressure sys-
tem includes a transducer that responds approximately

linearly to changes in volume of the sample. The pres-
sure cell is insulated, and temperature can be controlled
between 200 and 300 K. Cooling below 200 K is done
with liquid nitrogen.

For these investigations, we studied two samples, one
with a concentration of 30 wt.% methanol in water, and
a second with a concentration of 80 wt.%. The higher
concentration was chosen to avoid experimental com-
plications due to the expansion of Ice-Ih as it freezes.

Results: The transition temperatures are shown in
Fig. 2. The phase boundaries for pure water [14] and
methanol [15] are included for comparison. The eu-
tectic point for the methanol-water solution appears to
increase with pressure, similar to the behavior of the
freezing point of pure methanol. Conversely, the liq-
uidus point appears to decrease with pressure in the Ice-
Ih regime, similar to the behavior of pure water.
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Figure 2: Transition temperatures as a function of pressure
for methanol-water mixtures. The freezing temperatures for
pure methanol are shown as diamonds. The eutectic tem-
peratures are shown as inverted triangles and boxes in the
Ice-Ih and Ice-II regimes, while the liquidus temperatures for
30 wt.% solutions are shown as circles and triangles.
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